• Title/Summary/Keyword: Target evaporation

Search Result 63, Processing Time 0.028 seconds

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim;B. Davids;M. Williams;K.H. Hudson;S. Upadhyayula;M. Alcorta;P. Machule;N.E. Esker;C.J. Griffin;J. Williams;D. Yates;A. Lennarz;C. Angus;G. Hackman;D.G. Kim;J. Son;J. Park;K. Pak;Y.K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.919-926
    • /
    • 2023
  • To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Estimation of Potential Water Resources in Mega Cities in Asia

  • Takuya, Komura;Toshitsugu, Moroizumi;Kenji, Okubo;Hiroaki, Furumai;Yoshiro, Ono
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.75-81
    • /
    • 2008
  • The water shortage in mega cities in Asia, which face a rapid growth in urban population, is an outstanding problem. It is important, therefore, to accurately estimate the water balance in each city in order to use the limited water resources effectively. In this study, we estimated the potential water resources in し sixteen mega cities in Asia. The target cities were Delhi and Calcutta, India; Colombo, Sri Lanka; Dhaka, Bangladesh; Yangon, Myanmar; Bangkok, Thailand; Kuala Lumpur, Malaysia; Singapore; Jakarta, Indonesia; Hanoi, Vietnam; Beijing and Hong Kong, the People's Republic of China; Seoul, the People's Republic of Korea; Manila, the Philippines, and Sapporo and Tokyo, Japan. The potential water resources were estimated by subtracting the actual evaporation from the amount of rainfall. The actual evaporation was estimated using the potential evaporation obtained by Hamon's equation which requires the air temperature and the possible hours of sunshine. When the results of Hamon's and Penman's evaporation equations were compared, a considerable error appeared in the low latitude region. The estimation using Hamon's equation was corrected with the linear regression line of Hamon's and Penman's equations. A classification of the land cover was carried out based on satellite photographs of the target cities, and the volume of surface runoff for each city was obtained using the runoff ratios which depended on the land cover. As a result, the potential water resources in the above mega cities in Asia were found to be greater than the world average. However, the actual water resources which are available for one person to use are probably very limited.

  • PDF

Comparison of characteristics of MgO films deposited by vacuum arc method with other methods. (진공아크 증착법과 다른 공정에 의해 증착된 MgO 박막 특성 비교)

  • 이은성;김종국;이성훈;이건환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2003
  • MgO films is widely used in plasma display panel (PDP) technology. In this work, structural and optical properties of the MgO films deposited by e-beam evaporation, reactive magnetron sputtering, which are commercially used, and arc deposition were compared. MgO thin films were deposited on glass substrates by vacuum arc deposition equipment using a magnesium metal target at various oxygen gas flows. In order to investigate the packing density by ellipsometer, to measure reasonable erosion-rates of the MgO protective layers, we introduced an acceleration test method, namely, Ar+ ion beam induced erosion test. Also, XPS and UV test were adopted to examine the effect of the moisture on the optical transmittance of the MgO protective layers, which showed that these of MgO films by arc deposition method sustained more 90% and were insensitive to effect of the moisture. XRD and AFM have been also used to study behaviors of the structure and surface morphology.

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

An experimental study of the deposition of inorganic salts from seeded combustion gases by optical methods (광학적 방법에 의한 연소 개스에 포함된 알칼리 금속 염의 부착에 관한 실험적 연구)

  • 김상수;우성구
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.55-63
    • /
    • 1985
  • This study is focused on deposition process leading to inefficiency and hot corrosion in fossil fuel-fired furnaces and engines. An improved understanding of the coupled thermodynamics, kinetics, and transport processes governing the deposition rate of inorganic oxides and salts from hot gases containing these compounds can suggest more efficient test strategies and control measures. Accordingly, an optical re-evaporation method for accurately measuring the growth rate of deposits under laboratory burner conditions has been developed. To demonstrate the technique and provide data suitable for theoretical model development, a deliberately simple chemical system and target geometry are used. Potassium sulfate(K$_{2}$SO$_{4}$)is introduced into a premixed propane-air flat flame at atmospheric pressure. The growth rate of $K_{2}$SO$_{4}$ on an electrically heated Pt ribbon is measured by re-evaporation technique.

  • PDF

"Green Sea Ranger", an Oil-Spill Model for Korean Coastal Waters

  • Hong, Key-yong;Song, Mu-seok
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1997
  • We reviewed various oil-spill models and condensed the integrated information into a prediction model, “Green Sea Ranger”which is applicable to Korean coastal area. The developed software consists of pre- and post-modules for environment setup and display of results and main module for the prediction of oil\`s fate. In the pre-module target areas can be selected from the included geographic information system and various environmental and optional numerical data for the prediction can be input through easy GUI or imported from the database we established. For the fate of the spilt oil we included effects of spreading, advection, evaporation, and emulsification. Preliminary numerical experiment has proved that the developed oil-spill prediction system can be easily utilized in on-site oil recovery operations which usually require a quick and reasonable prediction.

  • PDF

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.228-234
    • /
    • 2017
  • Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

Fabrication and Properties of Photoconductive Multilayer Using Se and $Sb_2S_3$ (Se와 $Sb_2S_3$를 이용한 광도전막의 제작과 그 특성)

  • 오상광;박기철;김건일;김기완
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.646-651
    • /
    • 1987
  • The photoconductive multilayer composed of glassy, porous, and fine-grained layers was fabdricated with Se and Sb2S3 by vacuum evaporation in order to be used as vidicon target. And its electrical, optical properties were investigatee. The fabrication conditions were as follow: the glassy layer was first deposited to have the thickness of 6500 \ulcornerat the deposition rate of 250\ulcornersec. High photosensitivity(\ulcorner=1) was obtained but its shortcoming was high dielectric constant. Therefore, the porous layer was added to lower dielectric constant and had 7500\ulcornerthick in the argon gas ambikent of 7x10-\ulcorner And the fine-grained layer was formed to prevent secondary electron emission and obtain good resolution. Its thickness was about 1700\ulcorner For the given vidicon target, the light transfer characteristic, that is, photosensitivity (\ulcorner) was measured to be 0.8 at the applied voltage of 25V. The spectral sensitivity was quite similar to that of the human eyes.

  • PDF

Effects of Pretreatment for Controlling Internal Water Transport Direction on Moisture Content Profile and Drying Defects in Large-Cross-Section Red Pine Round Timber during Kiln Drying

  • Bat-Uchral BATJARGAL;Taekyeong LEE;Myungsik CHO;Chang-Jin LEE;Hwanmyeong YEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.493-508
    • /
    • 2023
  • Round timber materials of 600 mm length, cut from large-cross-section round timber of red pine (Pinus densiflora S. et Z.) of 450 mm width and 4.2 m length, were prepared as the target of kiln drying in this study. After treating the target materials through end sealing (ES), end sealing - kerfing (ES-K), lateral sealing - end sealing - boring (LS-ES-B), or lateral sealing - partial end sealing (LS-PES), the effects of the treatment on the incidence of drying defects were determined. The target materials with exposed lateral surface and sealed cross surface were steamed at the initial temperature of 65℃ above the official pest control temperature of 56℃, followed by kiln drying toward the final temperature of 75℃. The target materials with sealed lateral surfaces, on the other hand, were dried at the initial temperature of 90℃ at almost the maximum temperature of conventional kiln drying, as there is no risk of early check formation caused by surface moisture evaporation. The final temperature was set at approximately 100℃. The drying time, taken for the target materials with initial moisture content of 70%-80% to reach the target moisture content of 19%, varied across treatment conditions. The measured drying time was 1,146 hours (approximately 48 days) for the timber with sealed cross surface and 745 hours (approximately 31 days) for the timber with sealed lateral surface, until the moisture content reached the target level. The formation of surface checks could not be prevented in the control and ES groups, but a definite preventive effect was obtained for the LS-ES-B and LS-PES groups.