• Title/Summary/Keyword: Target Reflected Signal

Search Result 67, Processing Time 0.028 seconds

A Novel Synthesis Method of Underwater Target Reflected Signal (수중 표적 반사신호의 새로운 합성방법)

  • 김부일;김우현;박철우;박명호;권우현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.30-39
    • /
    • 1999
  • In this paper, we have proposed a novel method which can compose a reflected signal of the underwater target. The synthesis of the reflected signal in the target, the synthesized signal being similar to the characteristics of the reflected signal in the real target, is used the highlight model at the specific points of the target. We suggest the synthesis method of the reflected signal of the target using the pulsewidth variation and each other doppler effect at the highlight point, and compare the composed signal by the proposed method with that by conventional one. Simulation results show that the composed signal using the proposed method and the reflected signal of the real target is similar to the spectral characteristics.

  • PDF

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Active Sonar Target/Nontarget Classification Using Real Sea-trial Data (실제 해상 실험 데이터를 이용한 능동소나 표적/비표적 식별)

  • Seok, J.W.
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1637-1645
    • /
    • 2017
  • Target/Nontarget classification can be divided into the study of shape estimation of the target analysing reflected echo signal and of type classification of the target using acoustical features. In active sonar system, the feature vectors are extracted from the signal reflected from the target, and an classification algorithm is applied to determine whether the received signal is a target or not. However, received sonar signals can be distorted in the underwater environments, and the spatio-temporal characteristics of active sonar signals change according to the aspect of the target. In addition, it is very difficult to collect real sea-trial data for research. In this paper, target/non-target classification were performed using real sea-trial data. Feature vectors are extracted using MFCC(Mel-Frequency Cepstral Coefficients), filterbank energy in the Fourier spectrum and wavelet domain. For the performance verification, classification experiments were performed using backpropagation neural network classifiers.

Modelling and Simulation of Glint and RCS of Complex Target (복잡한 목표물의 Glint와 RCS 모델링 및 시뮬레이션)

  • Song, Seungeon;Shin, Han-Seop;Kim, Dae-Oh;Kang, Chul-Ung;Ko, Seokjun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The signal transmitted from radar is not reflected from a single point when the signal reflected by complex target. Resultantly, the amplitude and phase of the received signal can be changed because the target has lots of scatterers. The changes of the amplitude and the phase mean Glint and RCS, respectively. Although the Glint and RCS that caused by the same scatters are uncorrelated, however, they are not independent completely. Therefore, this paper proposes a method for generating the Glint and RCS by using same random number generator. And the time correlations of the Glint and RCS are respectively implemented in frequency domain by using each power spectral density of them.

A Direction Finding Proximity Fuze Sensor for Anti-air Missiles (방향 탐지용 전파형 대공 근접 신관센서)

  • Choi, Jae-Hyun;Lee, Seok-Woo;An, Ji-Yeon;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.613-621
    • /
    • 2013
  • This paper presents the direction finding proximity fuze sensor using the clutter rejection method and the adaptive target detection algorithm for anti-air missiles. To remove effects by clutter and detect a target accurately, the clutter rejection method of Legendre sequence with BPSK(Bi phase Shift Keying) modulation has been proposed and the Doppler signal which has cross correlation characteristics is obtained from reflected target signals. Considering the change of the Doppler signal, the adaptive target detection algorithm has been developed and the direction finding algorithm has been fulfilled by comparing received powers from adjacent three receiving antennas. The encounter simulation test apparatus was made to collect and analyze reflected signal and test results showed that the -10 dBsm target was detected over 10 meters and the target with mesh clutter was detected and direction was distinguished definitely.

Design and implementation of signal processing system for airborne active homing radar

  • Lee, Young-Sung;Kim, Doh-Hyun;Kim, Lee-Han;Kim, Young-Chae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.2-158
    • /
    • 2001
  • This paper introduces the design and implementation of a signal processing system for an airborne active homing radar system. This airborne active homing radar system uses the pulse Doppler radar of high PRF (Pulse Repetition Frequency) for computation of exact relative velocity of the target. This system carries out two operations mainly. The first is to transmit and receive microwave signal through the antenna. The second is to calculate the relative velocity of the target taking advantage of the Doppler frequency signal reflected from the target and detect the angle error between a target and an antenna LOS (Line Of Sight) to make the antenna direction coincident with the target. The signal processing system has a role of the latter.

  • PDF

A Study on the Analysis and the Test of the Reflected Signal about Target in the VHF Band (초단파 대역의 표적 반사 신호 시험 및 분석에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.813-818
    • /
    • 2020
  • This study is a study on the characteristics and analysis of the reflected signals about the target in the VHF band. In advance, the RCS(Radar Cross Section) characteristics of the target were analyzed by using the CST electromagnetic analysis tool, and the target was detected by using the Bi-Static method, and the change in the signal-to-noise ratio was tested. The test results show similar results with no significant fluctuations in the signal-to-noise ratio characteristics for the detection of signals reflected on the target, such as the results for RCS analysis according to the pre-incidence angle. In the future, this study will be used for RCS analysis of the targets and target detection of Radar in VHF/UHF band with relatively large wavelength compared to the X band.

An Analysis of Highlight Distribution Modeling for High Frequency CW Pulse Signal Reflection on Underwater Target (수중표적의 고주파수 CW 펄스신호 반사를 위한 하이라이트 분포 모델링 해석)

  • 김부일;이형욱;박명호;권우현
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • This paper proposes the practical echo-signal synthesis models - UTAHID (Underwater TArget by Highlight Distribution) & M-UTAHID(Modified UTAHID) - of underwater target for active sonar engineering At high frequencies all the echo components that are the specular reflected waves and various elastic scattering wave scan be regarded the summation of individual echo from some equivalent scattering centers, so the underwater target is characterized by highlights distributed in spatial target structure. Proposed models are compared with characteristics of random distributed model & equivalent interval highlight model, and analyzed target strength, echo-elongation effect, target time spread loss and so on. Thus these can be efficiently used in various real systems related to underwater target echo-signal synthesis on active sonar and acoustic countermeasure.

  • PDF

Design of a Tree-Structured Fuzzy Neural Networks for Aircraft Target Recognition (비행체 표적식별을 위한 트리 구조의 퍼지 뉴럴 네트워크 설계)

  • Han, Chang-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1034-1038
    • /
    • 2020
  • In order to effectively process target recognition using radar, accurate signal information for the target is required. However, such a target signal is usually mixed with noise, and this part of the study is continuously carried out. Especially, image processing, target signal processing and target recognition for the target are examples. Since the field of target recognition is important from a military point of view, this paper carried out research on target recognition of aircraft using a tree-structured fuzzy neural networks. Fuzzy neural networks are learned by using reflected signal data for an aircraft to optimize the model, and then test data for the target are used for the optimized model to perform an experiment on target recognition. The effectiveness of the proposed method is verified by the simulation results.

A Comparative Analysis of Target Strength Estimated Models for Underwater Echo Signal Synthesis (수중 반사신호 합성을 위한 표적강도 예측모델 비교분석)

  • 김부일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.93-103
    • /
    • 2001
  • A reflection signal in an active sonar using a high frequency is mainly formed of a specular reflection from the surface of an object along with several equivalent scatters inside, which are characterized by the spatial distribution of the highlight on the object. This study analyze the existing echo signal synthesis models eq, random distribution model, equivalent interval distribution model & MUTAHID(Modified Underwater TArget by HIlight Distribution) model for simulated target, and compare the characteristics of the reflected signal synthesis results for each model in various conditions. These highlight distribution models can be efficiently applied to the simulated target signals synthesis of various real systems requiring the echo signal synthesis on the underwater target.

  • PDF