• Title/Summary/Keyword: Target Polynomial

Search Result 69, Processing Time 0.022 seconds

Target Observability Analysis of Time-to-go Polynomial Guidance Law (Time-to-go 다항식 유도 법칙의 표적 가관측성 분석)

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.664-672
    • /
    • 2010
  • This paper provides the target observability analysis of time-to-go polynomial guidance law with bearing-only measurement. In this study, a direct approach is used to analyze the target observability. Since the observability condition of a constant-velocity target is given by the function of LOS angle only, the target observability characteristic is determined by substituting the closed form solution of LOS angle to the observability condition directly. The analysis results show that the target observability is depended on the choice of guidance gain, initial intercept condition and guidance command shape. After that this mathematical analysis result is evaluated and demonstrated by number of simulation.

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

Target Polynomial Design for Interval Plant Using Lipatov Theorem and CDM (CDM과 리파토프 정리를 이용한 구간 플랜트의 목적다항식 설계)

  • Oh, Hak-Joon;Chung, Tae-Jin;Lee, Jin-Kyu;Chung, Chan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • For a parametric uncertain system, there are many results on stability analysis, but only a few synthesis methods. In this paper, we proposed a new target polynomial decision method for the parametric uncertain system to stabilize the closed loop system with maximal parametric $l_2$ stability margin. To this, we used both Lipatov Theorem and coefficient diagram method(CDM). To show the effectiveness of the proposed method, we designed a robust controller for the inverted pendulum system with parametric uncertainties using fixed order pole assignment(FOPA) method and its performance was compared with that of the ${\mu}$ synthesis methods.

  • PDF

Time-to-go Polynomial Guidance Law for Target Observability Enhancement (표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙)

  • Kim, Tae-Hun;Lee, Chang-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we propose a new guidance law for target observability enhancement, which can control both terminal impact angle and acceleration. The proposed guidance law is simple form, combined conventional time-to-go polynomial guidance and a additional bias term which consists of relative position and proportional gain. The guidance law provides oscillatory flight trajectory and it maintains the conventional time-to-go polynomial guidance performance. To investigate the characteristics of the guidance law, we derive the closed-form solution, and various simulations are performed for proving the validity of the proposed guidance.

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

Development of Korean VTEC Polynomial Model Using GIM

  • Park, Jae-Young;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • The models used for ionosphere error correction in positioning using Global Navigation Satellite System (GNSS) are representatively Klobuchar model and NeQuick model. Although these models can correct the ionosphere error in real time, the disadvantage is that the accuracy is only 50-60%. In this study, a method for polynomial modeling of Global Ionosphere Map (GIM) which provides Vertical Total Electron Content (VTEC) in grid type was studied. In consideration of Ionosphere Pierce Points (IPP) of satellites with a receivable elevation angle of 15 degrees or higher on the Korean Peninsula, the target area for model generation and provision was selected, and the VTEC at 88 GIM grid points was modeled as a polynomial. The developed VTEC polynomial model shows a data reduction rate of 72.7% compared to GIM regardless of the number of visible satellites, and a data reduction rate of more than 90% compared to the Slant Total Electron Content (STEC) polynomial model when there are more than 10 visible satellites. This VTEC polynomial model has a maximum absolute error of 2.4 Total Electron Content Unit (TECU) and a maximum relative error of 9.9% with the actual GIM. Therefore, it is expected that the amount of data can be drastically reduced by providing the predicted GIM or real-time grid type VTEC model as the parameters of the polynomial model.

Polynomial-time Greedy Algorithm for Anti-Air Missiles Assignment Problem (지대공 미사일 배정 문제의 다항시간 탐욕 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.185-191
    • /
    • 2019
  • During the modern battlefields of multi-batches flight formation attack situation, it is an essential task for a commander to make a proper fire distribution of air defense missile launch platforms for threat targets with effectively and quickly. Pan et al. try to solve this problem using genetic algorithm, but they are fails. This paper gets the initial feasible solution using high threat target first destroying strategy only use 75% available fire of each missile launch platform. Then, the assigned missile is moving to another target in the case of decreasing total threat. As a result of experiment, while the proposed algorithm is polynomial-time complexity greedy algorithm but this can be improve the solution than genetic algorithm.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.