• Title/Summary/Keyword: Target Feature Information

Search Result 317, Processing Time 0.024 seconds

Parallel Multi-task Cascade Convolution Neural Network Optimization Algorithm for Real-time Dynamic Face Recognition

  • Jiang, Bin;Ren, Qiang;Dai, Fei;Zhou, Tian;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4117-4135
    • /
    • 2020
  • Due to the angle of view, illumination and scene diversity, real-time dynamic face detection and recognition is no small difficulty in those unrestricted environments. In this study, we used the intrinsic correlation between detection and calibration, using a multi-task cascaded convolutional neural network(MTCNN) to improve the efficiency of face recognition, and the output of each core network is mapped in parallel to a compact Euclidean space, where distance represents the similarity of facial features, so that the target face can be identified as quickly as possible, without waiting for all network iteration calculations to complete the recognition results. And after the angle of the target face and the illumination change, the correlation between the recognition results can be well obtained. In the actual application scenario, we use a multi-camera real-time monitoring system to perform face matching and recognition using successive frames acquired from different angles. The effectiveness of the method was verified by several real-time monitoring experiments, and good results were obtained.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

Explainable Machine Learning Based a Packed Red Blood Cell Transfusion Prediction and Evaluation for Major Internal Medical Condition

  • Lee, Seongbin;Lee, Seunghee;Chang, Duhyeuk;Song, Mi-Hwa;Kim, Jong-Yeup;Lee, Suehyun
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.302-310
    • /
    • 2022
  • Efficient use of limited blood products is becoming very important in terms of socioeconomic status and patient recovery. To predict the appropriateness of patient-specific transfusions for the intensive care unit (ICU) patients who require real-time monitoring, we evaluated a model to predict the possibility of transfusion dynamically by using the Medical Information Mart for Intensive Care III (MIMIC-III), an ICU admission record at Harvard Medical School. In this study, we developed an explainable machine learning to predict the possibility of red blood cell transfusion for major medical diseases in the ICU. Target disease groups that received packed red blood cell transfusions at high frequency were selected and 16,222 patients were finally extracted. The prediction model achieved an area under the ROC curve of 0.9070 and an F1-score of 0.8166 (LightGBM). To explain the performance of the machine learning model, feature importance analysis and a partial dependence plot were used. The results of our study can be used as basic data for recommendations related to the adequacy of blood transfusions and are expected to ultimately contribute to the recovery of patients and prevention of excessive consumption of blood products.

Feature Extraction and Classification of Target from Jet Engine Modulation Signal Using Frequency Masking (제트 엔진 변조신호에서 주파수 마스킹을 이용한 표적의 특징 추출 및 식별)

  • Kim, Si-Ho;Kim, Chan-Hong;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • This paper deals with the method to classify the aircraft target by analyzing its JEM signal. We propose the method to classify the engine model by analyzing JEM spectrum using the harmonic frequency mask generated from the blade information of jet engine. The proposed method does not need the complicated logic algorithm to find the chopping frequency in each rotor stage and the pre-simulated engine spectrum DB used in the previous methods. In addition, we propose the method to estimate the precise spool rate and it reduces the error in estimating the number of blades or in calculating the harmonic frequency of frequency mask.

A novel approach of ship wakes target classification based on the LBP-IBPANN algorithm

  • Bo, Liu;Yan, Lin;Liang, Zhang
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • The detection of ship wakes image can demonstrate substantial information regarding on a ship, such as its tonnage, type, direction, and speed of movement. Consequently, the wake target recognition is a favorable way for ship identification. This paper proposes a Local Binary Pattern (LBP) approach to extract image features (wakes) for training an Improved Back Propagation Artificial Neural Network (IBPANN) to identify ship speed. This method is applied to sort and recognize the ship wakes of five different speeds images, the result shows that the detection accuracy is satisfied as expected, the average correctness rates of wakes target recognition at the five speeds may be achieved over 80%. Specifically, the lower ship's speed, the better accurate rate, sometimes it's accuracy could be close to 100%. In addition, one significant feature of this method is that it can receive a higher recognition rate than the nearest neighbor classification method.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Enhanced Representation for Object Tracking (물체 추적을 위한 강화된 부분공간 표현)

  • Yun, Frank;Yoo, Haan-Ju;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.408-410
    • /
    • 2009
  • We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.

  • PDF

Speaker Verification System Using Support Vector Machine with Genetic Algorithms (유전자 알고리즘을 결합한 Support Vector Machine의 화자인증에서의 성능분석)

  • 최우용;이경희;반성범
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.557-560
    • /
    • 2003
  • Voice is one of the promising biometrics because it is one of the most convenient ways human would distinguish someone from others. The target of speaker verification is to divide the client from imposters. Support Vector Machine(SVM) is in the limelight as a binary classifier, so it can work well in speaker verification. In this paper, we combined SVM with genetic algorithm(GA) to reduce the dimensionality of input feature. Experiments were conducted with Korean connected digit database using different feature dimensions. The verification accuracy of SVM with GA is slightly lower than that of SVM, but the proposed algorithm has greater strength in the memory limited systems.

  • PDF

Extraction of frequency line feature of sonar signal using a neural network (신경회로망을 이용한 수중음향신호의 주파수선 특징 추출)

  • 하석운;이성은;남기곤;윤태훈;김재창;김길철
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.51-58
    • /
    • 1997
  • In passive sonar, the frequency spectrum of a sound radiated by underwater moving targets is composed of a broadband nonuniform background noise and narrowband discrete tonals. To detect the tonals, the background noise is estimated and removed. Using the existing algorithms that estimate the background noise, a week tonals are not detected. Because a freuqency line that is formed by tonals which are being extracted continuously is a feture of the target, we are nessesory to efficiently detect the tonals that compose the frequncy line. In this paper, we propose an efficient neural network that can remove automatically the background and detect the even errl tonals, and we extract the frequency line feature on the spectrogram by the proposed algorithm. The experimental results for a ship's radiated sound show a better performance in comparison with the existing TPM algorithm.

  • PDF