• Title/Summary/Keyword: Target DNA

Search Result 773, Processing Time 0.023 seconds

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar;Jung, Hyun Yi;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.10
    • /
    • pp.33.1-33.11
    • /
    • 2018
  • As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

Use of Stable Isotope Probing in Selectively Isolating Target Microbial Community Genomes from Environmental Samples for Enhancing Resolution in Ecotoxicological Assessment

  • Park, Joonhong;Congeevaram, Shankar;Ki, Dong-Won;Tiedje, James M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2006
  • In this study we attempted to develop a novel genomic method to selectively isolate target functional microbial genomes from environmental samples. For this purpose, stable isotope probing (SIP) was applied in selectively isolating organic pollutant-assimilating populations. When soil microbes were fed with $^{13}C-labeled $ biphenyl, biphenyl-utilizing cells were incorporated with the heavy carbon isotope. The heavy DNA portion was successfully separated by CsCl equilibrium density gradient. And the diversity in the heavy DNA was sufficiently reduced, being suitable for the current DNA microarray techniques to detect biphenyl-utilizing populations in the soil. In addition, we proposed a new way to get more genetic information by combining this SIP method with selective metagenomic approach. The increased selective power of these new DNA isolation methods will be expected to provide a good quality of new genetic information, which, in turn, will result in development of a variety of biomarkers that may be used in assessing ecotoxicology issues including the impacts of organic hazards, and antibiotic-resistant pathogens on human and ecological systems.

Developing a Protein-chip for Depigmenting Agents Screening (미백제 스크리닝용 단백질칩의 개발)

  • Kim, Eun-Ki;Kwak, Eun-Young;Han, Jung-Sun;Lee, Hyang-Bok;Shin, Jung-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.13-16
    • /
    • 2005
  • For the high-throughput-screening system (HTS) of depigmenting agents using a protein chip, effects of oligonucleotide-inhibitor sequence on the binding of Mitf protein to E box of MC1R was investigated. The sequence of oligonucletide-inhibitor affected the binding of the target DNA to Mitf, depending on the location of the sequence variation in the inhibitor nucleotide. The oligonucletide-inhibitor that changed the CATGTG sequence didn't show enough inhibition of the target DNA to Mitf, whereas significant inhibition was observed when the sequence outside the CATGTG was changed. This result indicated that CATCTG is crucial sequence for the binding of Mitf to I-box which initiates the transcription of pigmenting genes.

DNA Watermarking Method based on Random Codon Circular Code (랜덤 코돈 원형 부호 기반의 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.318-329
    • /
    • 2013
  • This paper proposes a DNA watermarking method for the privacy protection and the prevention of illegal copy. The proposed method allocates codons to random circular angles by using random mapping table and selects triplet codons for embedding target with the help of the Lipschitz regularity value of local modulus maxima of codon circular angles. Then the watermark is embedded into circular angles of triplet codons without changing the codes of amino acids in a DNA. The length and location of target triplet codons depend on the random mapping table for 64 codons that includes start and stop codons. This table is used as the watermark key and can be applied on any codon sequence regardless of the length of sequence. If this table is unknown, it is very difficult to detect the length and location of them for extracting the watermark. We evaluated our method and DNA-crypt watermarking of Heider method on the condition of similar capacity. From evaluation results, we verified that our method has lower base changing rate than DNA-crypt and has lower bit error rate on point mutation and insertions/deletions than DNA-crypt. Furthermore, we verified that the entropy of random mapping table and the locaton of triplet codons is high, meaning that the watermark security has high level.

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

The Diversity and Similarity of Soil Microbial Communities by DNA Cross Hybrization (DNA 교잡에 의한 토양 미생물 군집의 다양성과 유사성)

  • 김유영;송인근;민병례;조홍범;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegetation types, directly extracted DNA from 5 different soils were cross-hybridized with each other as a probe and target. Pinus densiflora soil was shown the highest value then agricultured soil>naked soil>grass soil>Quercus mongolicas soil in the order of diversity. Cluster analysis by similarity showed that soil microbial communities were categorized into three groups.

  • PDF

Development of DNA Sensor Using Magnetic Iron Oxide Nanoparticle (자성 산화철(iron oxide) 나노입자를 이용한 DNA 센서 개발)

  • Nam, Ki-Chang;Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.51-56
    • /
    • 2011
  • The surface of magnetic iron oxide nanoparticles (${\gamma}-Fe_2O_3$) is functionalized ($-NH_2$, -COOH) with bifunctional organic molecules and evaluated using FT-IR (Fourier transform infrared spectroscopy). We immobilize 21-base pair probe DNA and hybridize fluorescence-labeled (Cy5) target DNA onto the functionalized iron oxide nanoparticles. The fluorescence images obtained from a confocal microscopy show that the functionalized iron oxide nanoparticles should detect the hybridization of complementary and noncomplementary DNA.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Development of an Effective PCR Technique for Analyzing T-DNA Integration Sites in Brassica Species and Its Application (배추과에서 T-DNA 도입 위치 분석을 위한 효과적인 PCR 방법 개발 및 이용)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2015
  • Insertional mutagenesis induced by T-DNA or transposon tagging offers possibilities for analysis of gene function. However, its potential remains limited unless good methods for detecting the target locus are developed. We describe a PCR technique for efficient identification of DNA sequences adjacent to the inserted T-DNA in a higher plant, Chinese cabbage (Brassica rapa ssp. pekinensis). This strategy, which we named variable argument thermal asymmetric interlaced PCR (VA-TAIL PCR), was designed by modifying a single-step annealing-extension PCR by including a touch-up PCR protocol and using long gene-specific primers. Amplification efficiency of this PCR program was significantly increased by employing an autosegment extension method and linked sequence strategy in nested long gene-specific primers. For this technique, arbitrary degenerate (AD) primers specific to B. rapa were designed by analyzing the Integr8 proteome database. These primers showed higher accuracy and utility in the identification of flanking DNA sequences from individual transgenic Chinese cabbages in a large T-DNA inserted population. The VA-TAIL PCR method described in this study allows the identification of DNA regions flanking known DNA fragments. This method has potential biotechnological applications, being highly suitable for identification of target genomic loci in insertional mutagenesis screens.

Enhancement of DNA Microarray Hybridization using Microfluidic Biochip (미세유체 바이오칩을 이용한 DNA 마이크로어레이 Hybridization 향상)

  • Lee, H.H.;Kim, Y.S.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2007
  • Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.