• Title/Summary/Keyword: Tapping density

Search Result 14, Processing Time 0.025 seconds

Comparative Biomechanical Study of Self-tapping and Non Self-tapping Tapered Dental Implants in Artificially Simulated Quality 2 Bone

  • Baek, Yeon-Wha;Kim, Duck-Rae;Park, Ju-Hee;Lim, Young-Jun
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Purpose: Modifications of implant design have been related to improving initial stability. The purpose of this study was to investigate their respective effect on initial stability between two tapered implant systems (self-tapping vs. non-self-tapping) in medium density bone using three different analytic methods. Materials and Methods: Self-tapping implant (GS III$^{(R)}$; Osstem Implant Co., Busan, Korea) and non-self-tapping implant (Replace Select$^{(R)}$; Nobel Biocare, G$\H{o}$teborg, Sweden) were investigated. In Solid rigid polyurethane blocks of artificially simulated Quality 2 bone, each of the 5 implants was inserted according to the manufacturer's instructions for medium-bone drilling protocol. Evaluation of initial stability was carried out by recording the maximum insertion torque (IT) and performing the resonance frequency analysis (RFA), and the pull-out test. Results: The IT and RFA values of self-tapping implant were significantly higher than those of non self-tapping implant (P=.009 and P=.047, respectively). In the pull-out values, no significant differences were found in implants between two groups (P=.117). Within each implant system, no statistically significant correlation was found among three different outcome variables. Conclusions: These findings suggest that design characteristics of implant geometry significantly influence the initial stability in medium bone density.

Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value

  • Yoon, Hong-Gi;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Su-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • PURPOSE. This study investigated the influence of bone quality and surgical technique on the implant stability quotient (ISQ) value. In addition, the influence of interfacial bone quality, directly surrounding the implant fixture, on the resonance frequency of the structure was also evaluated by the finite element analysis. MATERIALS AND METHODS. Two different types of bone (type 1 and type 2) were extracted and trimmed from pig rib bone. In each type of bone, the same implants were installed in three different ways: (1) Compaction, (2) Self-tapping, and (3) Tapping. The ISQ value was measured and analyzed to evaluate the influence of bone quality and surgical technique on the implant primary stability. For finite element analysis, a three dimensional implant fixture-bone structure was designed and the fundamental resonance frequency of the structure was measured with three different density of interfacial bone surrounding the implant fixture. RESULTS. In each group, the ISQ values were higher in type 1 bone than those in type 2 bone. Among three different insertion methods, the Tapping group showed the lowest ISQ value in both type 1 and type 2 bones. In both bone types, the Compaction groups showed slightly higher mean ISQ values than the Self-tapping groups, but the differences were not statistically significant. Increased interfacial bone density raised the resonance frequency value in the finite element analysis. CONCLUSION. Both bone quality and surgical technique have influence on the implant primary stability, and resonance frequency has a positive relation with the density of implant fixture-surrounding bone.

Fluidized Bed Drying Effect on the Aerogel Powder Synthesis

  • Hong, Seong-Hoon;Lee, Dong-Kyu;Oh, Chang-Sup;Kim, Yong-Ha
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • A fluidized bed drying approach was utilized to the synthesis of water glass based silica aerogel powders. The effects of the fluidized bed drying conditions such as the superficial velocity and temperature of hot air and bead size as well as bead/wet-gel ratio, on the physical properties such as tapping density and productivity of the aerogel powders were systematically investigated. The experimental results showed that the amount of beads mixed with wet-gels in the fluidized bed column has the most profound impact on the fluidization efficiency, greatly enhancing the yield of the aerogel powders up to 98% with a proper bead/wet-gel weight ratio as compared to 72% without using beads. No significant change was observed in the tapping density over a wide range of the fluidized drying condition. Consequently the fluidized bed drying approach shows a good promise as an alternative route for the large-scale production of the aerogel powders.

Analyzing the Effect of Management Strategies on Gum Talha Yield from Acacia Seyal, South Kordofan, Sudan

  • Mohammed, M.H.;Roehle, H.
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • The present study was carried out from September 2007 to February 2008 in Umfakarin natural forest reserve, South Kordofan, Sudan. The objective was to analyze the effect of different management strategies on yield of gum talha from Acacia seyal. A total of 493 single target trees were selected, based on their diameters, and assigned to tapping treatments in three different stand densities (making a total of nine treatments per stand density). The treatments are as follows: tapping date with three levels (first of October, 15 October and first of November) and two levels of local tapping tools (sonki, and makmak). Untapped trees were used as control. The first picking of gum was started fifteen days after tapping while the subsequent pickings were done in intervals of fifteen days. Yield per tree throughout the season was obtained by summing up the gum yield from all pickings. Yield throughout the season (from first to the last picking) were analyzed. General linear model (GLM) was used to test the effect of different tapping treatments on the yield of gum talha. Post hoc test after analysis of variance (ANOVA) based on Scheffe test was performed to examine the differences in gum yield as a result of different management strategies. The results showed that tapping has a significant influence on gum yield. Analysis of pick-to-pick yield indicated that only three treatments in dense stand density showed a decreasing pattern while the rest of treatments either have constant or unclear patterns. The results of the present study were based on a single season data and that may underscore the real effect of Acacia seyal stands' management strategies on gum talha yield. Conducting gum yield experiments in permanent trial plots are highly recommended in order to analyze gum yield of seasonal time series.

Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis (진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어)

  • Kang, Dong-Hunn;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF

The effect of undersizing and tapping on bone to implant contact and implant primary stability: A histomorphometric study on bovine ribs

  • Di Stefano, Danilo Alessio;Perrotti, Vittoria;Greco, Gian Battista;Cappucci, Claudia;Arosio, Paolo;Piattelli, Adriano;Iezzi, Giovanna
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.227-235
    • /
    • 2018
  • PURPOSE. Implant site preparation may be adjusted to achieve the maximum possible primary stability. The aim of this investigation was to study the relation among bone-to-implant contact at insertion, bone density, and implant primary stability intra-operatively measured by a torque-measuring implant motor, when implant sites were undersized or tapped. MATERIALS AND METHODS. Undersized (n=14), standard (n=13), and tapped (n=13) implant sites were prepared on 9 segments of bovine ribs. After measuring bone density using the implant motor, 40 implants were placed, and their primary stability assessed by measuring the integral of the torque-depth insertion curve. Bovine ribs were then processed histologically, the bone-to-implant contact measured and statistically correlated to bone density and the integral. RESULTS. Bone-to-implant contact and the integral of the torque-depth curve were significantly greater for undersized sites than tapped sites. Moreover, a correlation between bone to implant contact, the integral and bone density was found under all preparation conditions. The slope of the bone-to-implant/density and integral/density lines was significantly greater for undersized sites, while those corresponding to standard prepared and tapped sites did not differ significantly. CONCLUSION. The integral of the torque-depth curve provided reliable information about bone-to-implant contact and primary implant stability even in tapped or undersized sites. The linear relations found among the parameters suggests a connection between extent and modality of undersizing and the corresponding increase of the integral and, consequently, of primary stability. These results might help the physician determine the extent of undersizing needed to achieve the proper implant primary stability, according to the planned loading protocol.

Comparison of Rheological Properties of Powder Chlorella sp. Cultivated in Fermentor and Pond

  • Kang, Ki-Rim;Lee, Chung-Yung-J.;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.740-745
    • /
    • 2002
  • The current study was conducted to identify the differences in the rheological properties of Chlorella sp. powder cultured in a fermentor and in a pond-like environment. Cells. cultured in the same media were harvested and spray dried. The biomass yield from the fermentor culture was 4.7% (dry basis), while that from the pond was 4.3% (dry basis). Measurements of the loose bulk density, tapping test, Hausner's ratio, and compressibility test all revealed differences between the rheological properties of the Chlorella sp. from the two cultivation systems. Although both the fermentor and pond cultured Chlorella sp. showed the same angle of repose, the mean size of the cells was 2.26 $\mu\textrm{m}$ and 2.89 $\mu\textrm{m}$, respectively. The weight of the Chlorella sp. tablets cultured in the fermentor and pond was 0.663 g/tablet and 0.593 g/tablet, respectively, while the friability of the tablets was 21% and 41%, respectively. Observation by Transmission Electron Microscope (TEM) showed that the cell wall of the Chlorella sp. cultured in the fermentor was thinner and more spherical than that cultured in the pond, thereby providing the main characteristic rheological properties of the powder.

Synthesis of spherical silica aerogel powder by emulsion polymerization technique

  • Hong, Sun Ki;Yoon, Mi Young;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.145-148
    • /
    • 2012
  • Spherical silica aerogel powders were fabricated via an emulsion polymerization method from a water glass. A water-in-oil emulsion, in which droplets of a silicic acid solution are emulsified with span 80 (surfactant) in n-hexane, was produced by a high power homogenizer. After gelation, the surface of the spherical silica hydrogels was modified using a TMCS (trimethylchlorosilane)/n-hexane solution followed by solvent exchange from water to n-hexane. Hydrophobic silica wet gel droplets were dried at 80 ℃ under ambient pressure. A perfect spherical silica aerogel powder between1 to 12 ㎛ in diameter was obtained and its size can be controlled by mixing speed. The tapping density, pore volume, and BET surface area of the silica aerogel powder were approximately 0.08 g·cm-3, 3.5 ㎤·g-1 and 742 ㎡·g-1, respectively.

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method (딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기)

  • Kim, Min-Soo;Park, Sang-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder (식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성)

  • Ha-Young Son;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.