• Title/Summary/Keyword: Tanker

Search Result 339, Processing Time 0.022 seconds

Analysis of the Factors Influencing the Ocean Freight Rate (해상운임에 영향을 미치는 주요 요인에 관한 연구)

  • Kim, Myoung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.385-391
    • /
    • 2022
  • In this study, a multivariate time series analysis was conducted to identify various variables that impact ocean freight rates in addition to supply and demand factors. First, we used the ClarkSea Index, Clarksons Average Bulker Earnings, and Clarksons Average Tanker Earnings provided by the Shipping Intelligence as substitute variables for the dependent variable, ocean freight. The following ndependent variables were selected: World Seaborne Trade, World Fleet, Brent Crude Oil Price, World GDP Growth Rate, Industrial Production (IP OECD) Growth Rate, Interest Rate (US$ LIBOR 6 Months), and Inflation (CP I OECD) through previous studies. The time series data comprise annual data (1992-2020), and a regression analysis was conducted. Results of the regression analysis show that the World Seaborne Trade and Brent Crude Oil P rice impacted the ClarkSea Index. Only the World Seaborne Dry Bulk Trade impacted the Clarksons Average Bulker Earnings, World Seaborne Oil Trade, Brent Crude Oil Price, IP, and CP I on the Clarksons Average Tanker Earnings.

Analysis of connectedness Between Energy Price, Tanker Freight Index, and Uncertainty (에너지 가격, 탱커운임지수, 불확실성 사이의 연계성 분석)

  • Kim, BuKwon;Yoon, Seong-Min
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.87-106
    • /
    • 2022
  • Uncertainties in the energy market are increasing due to technology developments (shale revolution), trade wars, COVID-19, and the Russia-Ukraine war. Especially, since 2020, the risk of international trade in the energy market has increased significantly due to changes in the supply chain of transportation and due to prolonged demand reduction because of COVID-19 and the Russian-Ukraine war. Considering these points, this study analyzed connectedness between energy price, tanker index, and uncertainty to understand the connectedness between international trade in the energy market. Main results are summarized as follows. First, as a result of analyzing stable period and unstable period of the energy price model using the MS-VAR model, it was confirmed that both the crude oil market model and the natural gas market model had a higher probability of maintaining stable period than unstable period, increasing volatility by specific events. Second, looking at the results of the analysis of the connectedness between stable period and unstable period of the energy market, it was confirmed that in the case of total connectedness, connectedness between variables was increased in the unstable period compared to the stable period. In the case of the energy market stable period, considering the degree of connectedness, it was confirmed that the effect of the tanker freight index, which represents the demand-side factor, was significant. Third, unstable period of the natural gas market model increases rapidly compared to the crude oil market model, indicating that the volatility spillover effect of the natural gas market is greater when uncertainties affecting energy prices increase compared to the crude oil market.

A Study on the Early Warning Model of Crude Oil Shipping Market Using Signal Approach (신호접근법에 의한 유조선 해운시장 위기 예측 연구)

  • Bong Keun Choi;Dong-Keun Ryoo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • The manufacturing industry is the backbone of the Korean economy. Among them, the petrochemical industry is a strategic growth industry, which makes a profit through reexports based on eminent technology in South Korea which imports all of its crude oil. South Korea imports whole amount of crude oil, which is the raw material for many manufacturing industries, by sea transportation. Therefore, it must respond swiftly to a highly volatile tanker freight market. This study aimed to make an early warning model of crude oil shipping market using a signal approach. The crisis of crude oil shipping market is defined by BDTI. The overall leading index is made of 38 factors from macro economy, financial data, and shipping market data. Only leading correlation factors were chosen to be used for the overall leading index. The overall leading index had the highest correlation coefficient factor of 0.499 two months ago. It showed a significant correlation coefficient five months ago. The QPS value was 0.13, which was found to have high accuracy for crisis prediction. Furthermore, unlike other previous time series forecasting model studies, this study quantitatively approached the time lag between economic crisis and the crisis of the tanker ship market, providing workers and policy makers in the shipping industry with an framework for strategies that could effectively deal with the crisis.

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF

A Study on the Safety of Anchoring for Ulsan M-10 Anchorage (울산항 M-10 정박지의 정박안전성 연구)

  • KIM, Se-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.291-305
    • /
    • 2009
  • As you known well, Ulsan port is very famous for handling chemical products which occupies about 80% of quantities of all Korean ports. Many ship's operators prefer to handle liquid cargo es at proper anchorages instead of the berth for saving port expenses. Ulsan M-10 anchorage was assigned for handling liquid cargoes, however this anchorage's space is restricted by the oil pipeline which lays under seabed about 400m off from the center of M-10 anchorage, for which we have to consider of the external force and counter force for keeping the safety of anchoring. Where, external force is induced by wind, tidal currents and wave while counter force is induced by holding power of anchor/chain. In this study, author evaluated a method to analyze theoretically the limit of external force condition up to which an anchoring ship can keep her position without dragging, and for which applied to many kinds of combined Ships as mother ship of 50,000 DWT Tanker and 4 sizes of Tanker as alongsided ship.

The Structural Design of a Large Oil Tanker based on the CSR by Considering the Web Arrangement and Material Property (웨브 배치 및 재질 변화를 고려한 CSR 기반 대형유조선의 구조설계 연구)

  • Na, Seung-Soo;Yum, Jae-Seon;Kim, Yoon-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.598-605
    • /
    • 2010
  • The structural design of oil tankers and bulk carriers should be performed based on the Common Structural Rules(CSR) which were recently established by the International Association Classification Societies(IACS). At first, in the structural design viewpoint, the scantling and hullweight based on the CSR should be compared with those of existing rules, and then a minimum weight/cost design should be performed by considering the variation of the number of web and the material property. In this study, the optimum web space and material property will be proposed by performing a minimum weight/cost design of a large oil tanker, and the results will be compared with those of existing ship. The longitudinal members are determined by SeaTrust-Holdan developed by the Korean Register of Shipping(KR), and the transverse members are determined by NASTRAN and PULS.

Evaluation of Course Stability Performance for Tanker using CFD (CFD를 이용한 Tanker의 침로안정성 평가)

  • Hong, Chun-Beom;Yang, Hee-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.