• 제목/요약/키워드: Tank-in-series model

검색결과 94건 처리시간 0.029초

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석 (Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin)

  • 김성원
    • 한국농공학회지
    • /
    • 제41권5호
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구 (A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy)

  • 오한별;장경민;오지영;이명배;박장우;조용윤;신창선
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.63-70
    • /
    • 2023
  • 최근 스마트팜 에너지 비용 중 35% 낸난방비 에너지 소비가 증가되어 에너지 소비 효율화가 요구되며, 전기료 현실화에 대한 우려로 신재생 에너지 중요성이 증가하고 있다. 신재생 에너지는 수력, 풍력, 태양광 등에 속하며, 이중 태양광 에너지는 전기에너지로 변환하는 발전기술로, 이 기술은 에너지원이 환경에 미치는 영향이 적고, 유지 보수가 간편하다는 특징을 갖고 있다. 본 연구에서는 온실 축열조, 히트펌프 데이터 기반으로 축열조 영향을 많이 미치는 요소를 선정하고 축열조 공급 온도예측 모델을 개발하고자 한다. 시계열 데이터 분석 및 예측에 효과적인 LSTM(Long Short-Term Memory)과 다른 앙상블 학습 기법보다 뛰어난 XGBoost 모델을 이용하여 예측한다. 히트펌프 축열조 온도를 예측함으로써 에너지 소비를 최적화하여 시스템 운영을 최적화할 수 있다. 또한, 태양광 활용에 따른 냉난방비 절감 및 농가의 에너지 자립도 개선 등 스마트팜 에너지 통합 운영 시스템에 연계하고자 한다. 플랫폼을 통해 폐열 에너지의 공급을 관리하고 최대 난방부하 및 계절, 시간별 작물생장에 필요한 에너지값을 도출하여 이를 기반으로 최적 에너지 운용방안을 도출하고자 한다.

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik;Gokhan Altay;Cafer Kayadelen
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.425-435
    • /
    • 2023
  • Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

Numerical calculation and experiment of a heaving-buoy wave energy converter with a latching control

  • Kim, Jeongrok;Cho, Il-Hyoung;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 2019
  • Latching control was applied to a Wave Energy Converter (WEC) buoy with direct linear electric Power Take-Off (PTO) systems oscillating in heave direction in waves. The equation of the motion of the WEC buoy in the time-domain is characterized by the wave exciting, hydrostatic, radiation forces and by several damping forces (PTO, brake, and viscous). By applying numerical schemes, such as the semi-analytical and Newmark ${\beta}$ methods, the time series of the heave motion and velocity, and the corresponding extracted power may be obtained. The numerical prediction with the latching control is in accordance with the experimental results from the systematic 1:10-model test in a wave tank at Seoul National University. It was found that the extraction of wave energy may be improved by applying latching control to the WEC, which particularly affects waves longer than the resonant period.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

성층화된 축열조의 1차원모델에 대한 적분 근사해 (Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks)

  • 정재동
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

빗물이용의 수문학적 평가: 2. 수문학적 평가 (Hydrological Evaluation of Rainwater Harvesting: 2. Hydrological Evaluation)

  • 김경준;유철상;윤주환
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.230-238
    • /
    • 2008
  • This study evaluated the economic aspect of the rainwater harvesting facilities by hydrologically analyzing the inflow, rainwater consumption, rainfall loss, tank storage, and overflow time series to derive the net rainwater consumption and the number of days of rainwater available. This study considers several rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology and Daejon World Cup Stadium and the results derived are as follows. (1) Increasing the water consumption decreases the number of days of rainwater available. (2) Due to the climate in Korea, a larger tank storage does not increase the amount and the number of days of water consumption during wet season (June to September), but a little in October. (3) Economic evaluation of the rainwater harvesting facilities considered in this study shows no net benefit (private benefit). (5) Flood reduction effect of rainwater harvesting facilities was estimated very small to be about 1% even in the case that 10% of all the basin is used as the rainwater collecting area.

Development of the ice resistance series chart for icebreaking ships

  • Lee, Chun-Ju;Joung, Tae-Hwan;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.794-802
    • /
    • 2018
  • The ice resistance series charts for icebreaking ships were developed through a series of systematic model tests in the ice tank of the Korean Research Institute of Ship and Ocean Engineering (KRISO). Spencer's (1992) component-based scaling system for ship-ice model tests was applied to extend the model ship correlations. Beam to draft ratio (B/T), length to beam ratio (L/B), block coefficient ($C_B$) and stem angle (${\alpha}$) were selected as geometric parameters for hull form development. The basic hull form (S1) of twin pod type with B/T of 3.0, L/B of 6.0, $C_B$ of 0.75 and stem angle of $25^{\circ}$ was generated with a modern hull design concept. A total of 13 hulls were designed varying the geometric parameters; B/T of 2.5 and 3.5, L/B of 5.0 and 7.0, $C_B$ from 0.65 to 0.85 in intervals of 0.05, and 5 stem angles from $15^{\circ}$ to $35^{\circ}$. Ice resistance tests were first carried out with the basic hull form in level ice with suitable speed. Four more tests for $C_B$ variations from 0.65 to 0.85 were conducted and two more for beam to draft and length to beam ratios were also performed to study the effect of the geometric parameters on ice resistance. Ice resistance tests were summarized using the volumetric coefficient, $C_V$ ($={\nabla}/L^3$), instead of L/B and $C_B$ variations. Additional model tests were also carried out to account for the effect of the stem angle, ice thickness and ice strength on ice resistance. In order to develop the ice resistance series charts with a minimum number of experiments, the trends of the ice resistance obtained from the experiments were assumed to be similar for other model ship with different geometric parameters. A total of 18 sheets composed of combinations of three different beam to draft ratios and six block coefficients were developed as a parameter of $C_V$ in the low speed regions. Three correction charts were also developed for stem angles, ice thickness and ice strength respectively. The charts were applied to estimate ice resistance for existing icebreaking ships including ARAON, and the results were satisfactory with reasonable accuracy.

자율무인잠수정 테스트베드 이심이의 개발과 수조시험 (Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;오준호
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.