• Title/Summary/Keyword: Tangential inlet

Search Result 52, Processing Time 0.037 seconds

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

Comparison of Tangential and Axial Flow Cyclones for Small Dust Collectors (소형 집진기용 접선식 및 축류식 사이클론 성능비교)

  • Lee, Sungwon;Lee, Chungmin;Yoon, Jong-Hwan
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • The tangential and axial cyclones were fabricated using a 3D printer and the total collecting efficiency, cut-diameter, and pressure drop characteristics of the two types of cyclones with the same inlet area were investigated experimentally. The results show that the total collecting efficiency tends to increase as the inlet velocity increases. However, at a 20m/s condition of the tangential cyclone, the collected particles were re-entrained to the ascending vortex flow, resulting in a decrease of the total collecting efficiency. In the axial cyclone, the cross-sectional area is designed to increase at the inlet and the velocity is reduced, so that the re-entrainment effect does not appear in this study. The pressure loss of the tangential cyclone was larger than that of the axial cyclone. The cut-diameter tends to decrease with increasing the inlet velocity in two types of cyclones, except for the 20m/s condition of the tangential cyclone.

Characteristics of Electrostatic Cyclone-Bag Filter with Upper Inlet (상부유입식 전기 Cyclone-Bag Filter의 특성)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.179-190
    • /
    • 2000
  • The main object of this study was to investigate experimentally the characteristics of electrostatic cyclone-bag filter with upper tangential inlet in order to overcome the low collection efficiency for the submicron particle and high pressure drop which were main problems of general fabric bag filters. The experiment was carried out for the analysis of collection efficiency and pressure drop of electrostatic cyclone-bag filter comparing to those of fabric bag filter with various experimental parameters such as the inlet velocity(filtration velocity) and applied voltage etc. In the results the upper tangential inlet type showed higher collection efficiency for submicron particles below 2 ${\mu}{\textrm}{m}$ in diameter than that of center inlet and over 99.9% for overall collection efficiency. Pressure drop reduction ratios were shown as 40-50% for the applied voltage 0kV by centrifugal force and 70-90% for 20k V by the centrifuga and electrostatic force with the tangential inlet velocity (12-21m/s)

  • PDF

Experiment of small cyclone performance depending on the inlet type (입구형상에 따른 소형 사이클론의 성능 실험)

  • Kim, Min-Ha;Hur, Gwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1969-1974
    • /
    • 2004
  • The performance of small cyclone is analysed by an experiment for the purpose of developing a bag-less vacuum cleaner. For the high collection efficiency and low pressure loss cyclone, the effect of cyclone inlet feature must be well understood. Four types of the helical inlet are considered to compare with the normal tangential inlet, and also various inlet velocities are used to each inlet type. Based on the reference dimension, each type of inlet shows the changes of the grade efficiency and pressure loss which determine the cyclone quality. The results show that the helical inlet has the smaller cut-size but bigger pressure loss than the tangential inlet. And the degree of opening area influences factors of cyclone performance. As the inlet velocity is increased, the cut-size becomes smaller and the pressure loss becomes bigger of each cyclone. Further studies are required to understand the optimized helical inlet of cyclone.

  • PDF

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets (접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

A Study on the Filtration Characteristics of Baghouse with Tangential Inlet Depending on the Shape of Inner Tube (접선유입 방식 여과집진기의 내통형상 변화에 따른 집진특성 연구)

  • Choi, H.K.;Park, S.J.;Lim, J.H.;Kim, S.D.;Park, H.S.;Park, Y.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.158-161
    • /
    • 2001
  • A new type baghouse with tangential inlet and inner tube was developed and it's performances were evaluated. Experiments with variable shapes of inner tube were performed to suggest an optimum shape of inner tube which might decrease the dust loading onto bag filter surface and the amount of reentrained particles by internal gas flow. The dust loading was lower when inner tubes parallel to outer casing exist. When an inner tube covering around the lower portion of bag filters was used, the dust particles detached from the filter surface by cleaning process were reentraind by internal recirculating gas flow.

  • PDF

An Investigation of Swirling Flow in a Cylindrical Tube

  • Chang, Tae-Hyun;Kim, Hee-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1892-1899
    • /
    • 2001
  • An experimental study was performed for measuring velocity and turbulence intensity in a circular tube for Re= 10,000, 15,000 and 20,000, with swirl and without swirling flow. The velocity fields were measured using PIV techniques and swirl motion was produced by a tangential inlet condition. Some preliminary measurements indicated that over the first 4 diameter, two regions of flow reversal were set up (the so called 2-cell structure). At the highest Reynolds numbers, the maximum values of the measured axial velocity components had moved toward the test tube wall and produce more flow reversal at the conter of the tube. As the Reynolds number increased, the turbulence intensity of swilling flow at the tube inlet also increased.

  • PDF

An Experimental Study on Heat Transfer Characteristics with Turbulent Swirling Flow Using Uniform Heat Flux in a Cylindrical Annuli

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2042-2052
    • /
    • 2003
  • An experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. The static pressure, the local flow temperature, and the wall temperature with decaying swirl were measured by using tangential inlet conditions and the friction factor and the local Nusselt number were calculated for Re=30000∼70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.