DOI QR코드

DOI QR Code

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets

접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구

  • Seong, Hoje (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Rhee, Dong Sop (Multi Disaster Countermeasures Organization, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Inhwan (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 성호제 (한국건설기술연구원 국토보전연구본부) ;
  • 이동섭 (한국건설기술연구원 복합재난대응연구단) ;
  • 박인환 (한국건설기술연구원 국토보전연구본부)
  • Received : 2019.01.02
  • Accepted : 2019.02.14
  • Published : 2019.03.31

Abstract

The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.

급격한 도시화와 산업화로 도심 재난 취약성이 증가하고, 전 세계적인 기후변화로 인한 극한 강우사상의 발생빈도가 증가하고 있다. 기존 방재시설의 용량한계를 넘어선 극한 강우사상의 발생으로 도심 지역의 침수피해 또한 증가하고 있다. 도심 침수피해를 예방하기 위해 지하공간을 활용한 지하저류 시설과 지하배수터널 활용이 급부상하고 있으며, 강우가 유입되는 지하유입구에 대한 수리학적 검토를 통한 성능 분석이 중요하다. 본 연구에서는 지하 유입구로 활용되고 있는 접선식(tangential) 유입구와 나선식(spiral) 유입구에 대해 유입유량 변화에 따른 유입부 수위를 계측하고 흐름 특성 변화를 분석했다. 나선식 유입구의 경우, 저유량 조건에서의 와류 유도 효과를 개선하기 위해 유입부 바닥면에 계단형 다단식 구조를 도입했다. 접선식 유입구에서는 고유량 유입조건 아래 도수(hydraulic jump)가 발생하며 유량 배제 효과가 급격하게 감소했다. 다단식 나선(multi-stage) 유입구의 경우, 접선식 유입구보다 유입유량 증가에 따른 수위 상승률은 높지만 저유량 및 고유량 유입조건에 대해 안정적인 유량 배제 효과를 유지했다. 또한, 실험에서 사용된 유입구 모형이 활용될 수 있도록 접선식 유입구와 다단식 나선 유입구 모형에 대한 수위-유량 관계 실험식(empirical formula)을 제시했다.

Keywords

SJOHCI_2019_v52n3_227_f0001.png 이미지

Fig. 1. Tangential inlet

SJOHCI_2019_v52n3_227_f0002.png 이미지

Fig. 2. Spiral inlet

SJOHCI_2019_v52n3_227_f0003.png 이미지

Fig. 3. Multi-stage spiral inlet

SJOHCI_2019_v52n3_227_f0004.png 이미지

Fig. 4. Experiment channel

SJOHCI_2019_v52n3_227_f0005.png 이미지

Fig. 5. Tangential inlet model

SJOHCI_2019_v52n3_227_f0006.png 이미지

Fig. 6. Multi-stage spiral inlet model

SJOHCI_2019_v52n3_227_f0007.png 이미지

Fig. 7. Measuring points of the water level

SJOHCI_2019_v52n3_227_f0008.png 이미지

Fig. 8. Water level with the inflow discharge of the tangential inlet

SJOHCI_2019_v52n3_227_f0009.png 이미지

Fig. 9. Water level with the inflow discharge of the multi-stage spiral inlet

SJOHCI_2019_v52n3_227_f0010.png 이미지

Fig. 10. Relationship between Froude number (Fr) and water levelratio (h/D)

SJOHCI_2019_v52n3_227_f0011.png 이미지

Fig. 11. Rising ratio of the water level with the inflow discharge

Table 1. Inflow conditions

SJOHCI_2019_v52n3_227_t0001.png 이미지

References

  1. Drainage Services Department (DSD) (2003). Stormwater drainage master plan study in northern Hong Kong Island - Executive summary. The Government of Hong Kong Special Administrative Region, Drainage Services Department, Hong Kong.
  2. Drioli, C. (1947). "Su un particolare tipo di imbocco per pozzidi scarico." L'Energia Elettrica, Vol. 24, No. 10, pp. 447-452.
  3. Giudice, G. D., and Gisonni, C. (2011). "Vortex dropshaft retrofitting: case of Naples city (Italy)." Journal of Hydraulic Research, Vol. 49, No. 6, pp. 804-808. https://doi.org/10.1080/00221686.2011.622148
  4. Hager, W. H. (1999). Wastewater hydraulics. Springer, Berlin, New York, USA.
  5. Jain, S. C. (1984). "Tangential vortex-inlet." Journal of Hydraulic Engineering, Vol. 110, No. 12, pp. 1683-1699. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1683)
  6. Jain, S. C., and Ettema, R. (1987). Swirling flow problems at intakes - Vortex-flow intakes. IAHR Hydraulic Structures Design Manual, Balkema, Rotterdam, Netherlands, pp. 125-137.
  7. Jevdjevich, V., and Levin, L. (1953). "Entrainment of air in flowing water and technical problems connected with It." Proceedings of the Minnesota International Hydraulics Convention, ASCE.
  8. Kim, J. S., Kim, S. Y., Choi, T. S., and Yoon, S. E. (2012). "Analysis of stream characteristics at tangential intake structure of deep underground strom water tunnel." Proceedings of Korea Water Resources Association, Gangwon-do, Korea, pp. 604.
  9. Lee, J. H. W., Yu, D., and Choi, D. K. W. (2006). "Physical hydraulic model tests for Lai Chi Kok transfer scheme - Intake structures." Croucher Laboratory of Environmental Hydraulics, The University of Hong Kong, Hong Kong.
  10. Mulligan, S., Casserly, J., and Sherlock, R. (2016). "Effects of geometry on strong free-surface vortices in subcritical approach flows." Journal of Hydraulic Engineering, Vol. 142, No. 11, p. 04016051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001194
  11. Park, S. H., Oh, J. O., Park, J. H., and Park, C. K. (2017). "A study on vertical inlet of inflow characteristics of the Shinwol rainwater storage & drainage system by design condition." Journal of Korea Water Resources Association, Vol. 50, No. 2, pp. 129-138. https://doi.org/10.3741/JKWRA.2017.50.2.129
  12. Quick, M. (1990). "Analysis of spiral vortex and vertical slot vortex drop shafts." Journal of Hydraulic Engineering, Vol. 116, No. 3, pp. 309-325. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:3(309)
  13. Rhee, D. S., and Kim, C. W. (2007). "Consideration of the stagedischarge relation in spiral intake." Proceedings of Korea Water Resources Association, Gangwon-do, Korea, pp. 894-898.
  14. Szirtes, T. (2007). "Applied dimensional analysis and modeling." Elsevier, Burlington, Massachusetts, USA.
  15. Vischer, D. L., and Hager, W. H. (1995). Energy dissipators - vortex drops. IAHR Hydraulic Structures Design Manual, Taylor & Francis, New York, USA, pp. 167-181.
  16. Yu, D., and Lee, H. W. (2009). "Hydraulics of tangential vortex intake for urban drainage." Journal of Hydraulic Engineering, Vol. 135, No. 3, pp. 164-174. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(164)
  17. Zhao, C. H., Zhu, D. Z., ASCE, M., Sun, S. K., and Liu, Z. P. (2006). "Experimental study of flow in a vortex drop shaft." Journal of Hydraulic Engineering, Vol. 132, No. 1, pp. 61-68. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(61)