• 제목/요약/키워드: Tall Buildings

검색결과 888건 처리시간 0.029초

Study on aerodynamic shape optimization of tall buildings using architectural modifications in order to reduce wake region

  • Daemei, Abdollah Baghaei;Eghbali, Seyed Rahman
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.139-147
    • /
    • 2019
  • One of the most important factors in tall buildings design in urban spaces is wind. The present study aims to investigate the aerodynamic behavior in the square and triangular footprint forms through aerodynamic modifications including rounded corners, chamfered corners and recessed corners in order to reduce the length of tall buildings wake region. The method used was similar to wind tunnel numerical simulation conducted on 16 building models through Autodesk Flow Design 2014 software. The findings revealed that in order to design tall 50 story buildings with a height of about 150 meters, the model in triangular footprint with aerodynamic modification of chamfered corner facing wind direction came out to have the best aerodynamic behavior comparing the other models. In comparison to the related reference model (i.e., the triangular footprint with sharp corners and no aerodynamic modification), it could reduce the length of the wake region about 50% in general. Also, the model with square footprint and aerodynamic modification of chamfered corner with the corner facing the wind could present favorable aerodynamic behavior comparing the other models of the same cluster. In comparison to the related reference model (i.e., the square footprint with sharp corners and no aerodynamic modification), it could decrease the wake region up to 30% lengthwise.

Performance of Seismic Protective Systems for Super-Tall Buildings and Their Contents

  • Kasai, Kazuhiko
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.155-165
    • /
    • 2016
  • A much higher level of seismic performance is needed for supertall buildings due to increased demands for their functional continuities and the recognized needs for their continuing emergence in metropolitan areas. This paper analyzes, compares, and contrasts responses recorded during the 2011 Tohoku-oki Earthquake of different supertall buildings featuring conventional and vibration-controlled engineering systems. The superior performance and advantage of the latter are pointed out, and the typical dynamic properties, response characteristics, and effects on the secondary system are discussed. Ongoing efforts to enhance vibration control performance are described, covering the development of specifications, use of performance curves and targeted displacement design, and methods to find appropriate locations of damper installation resulting in a minimized amount of dampers.

Performance-based wind design framework proposal for tall buildings

  • Alinejad, Hamidreza;Kang, Thomas H.K.;Jeong, Seung Yong
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.283-292
    • /
    • 2021
  • Performance-based seismic design (PBSD) is currently used for retrofitting of older buildings and the design of new buildings. Whereas, application of performance-based design for wind load is still under development. The tendency has been in the codes to increase wind hazard based on recent recorded events. Since tall buildings are highly susceptible to wind load, necessity for developing a framework for performance-based wind design (PBWD) has intensified. Only a few guidelines such as ASCE (2019) provide information on using PBWD as an alternative for code prescriptive wind design. Though wind hazards, performance objectives, analysis techniques, and acceptance criteria are explained, no recommendations are provided for several aspects like how to select a proper level of wind hazard for each target performance criterion. This paper is an attempt to explain current design philosophy for wind and seismic loads and inherent connection between the components of PBSD for development of a framework for PBWD of tall buildings. Recognizing this connection, a framework for PBWD based on limits set for serviceability and strength is also proposed. Also, the potential for carrying out PBWD in line with ASCE 7-16 is investigated and proposed in this paper.

TMD의 위치변화에 따른 건물의 응답효과 (Location Effect of Tuned Mass Dampers on the Response of Buildings)

  • 민경원;홍성목;황재승
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.95-99
    • /
    • 1993
  • Conventional tuned mass dampers are located on the top floor of tall buildings, which reduce the fundamental mode response of buildings. Higher modes may have a greater contribution toward the acceleration response of tall buildings. To reduce this, additional tuned mass dampers are required and could be substituted as building equipments. This paper shows, with a numerical ezample, how the lecate tuned mass damper in order to reduce the higher mode response effectively

  • PDF

Furniture Layout and Design for Better Indoor Air Quality in Office Buildings

  • Leung, Luke
    • 국제초고층학회논문집
    • /
    • 제11권1호
    • /
    • pp.69-74
    • /
    • 2022
  • - COVID -19 taught us a lot about how to protect our tall buildings from infectious diseases. This paper captures the lessons learned about airflow in indoor spaces when considering furniture and its placement. By applying them we move towards future proofing our buildings both in normal and pandemic times.

The effect of RBS connection on energy absorption in tall buildings with braced tube frame system

  • Shariati, Mahdi;Ghorbani, Mostafa;Naghipour, Morteza;Alinejad, Nasrollah;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.393-407
    • /
    • 2020
  • The braced tube frame system, a combination of perimeter frame and bracing frame, is one of the systems used in tall buildings. Due to the implementation of this system in tall buildings and the high rigidity resulting from the use of general bracing, providing proper ductility while maintaining the strength of the structure when exposing to lateral forces is essential. Also, the high stress at the connection of the beam to the column may cause a sudden failure in the region before reaching the required ductility. The use of Reduced Beam Section connection (RBS connection) by focusing stress in a region away from beam to column connection is a suitable solution to the problem. Because of the fact that RBS connections are usually used in moment frames and not tested in tall buildings with braced tube frames, they should be investigated. Therefore, in this research, three tall buildings in height ranges of 20, 25 and 30 floors were modeled and designed by SAP2000 software, and then a frame in each building was modeled in PERFORM-3D software under two RBS-free system and RBS-based system. Nonlinear time history dynamic analysis is used for each frame under Manjil, Tabas and Northridge excitations. The results of the Comparison between RBS-free and RBS-based systems show that the RBS connections increased the absorbed energy level by reducing the stiffness and increasing the ductility in the beams and structural system. Also, by increasing the involvement of the beams in absorbing energy, the columns and braces absorb less energy.

초고층건물의 초기 구조설계를 위한 횡강성 증가율 예측 (Prediction of the Ratios of Increase in Lateral Stiffness for Preliminary Structural Design of Tall Buildings)

  • 정종현
    • 한국전산구조공학회논문집
    • /
    • 제20권4호
    • /
    • pp.453-462
    • /
    • 2007
  • 본 연구의 목적은 초고층건물의 횡강성 증가요인 효과를 분석하고 이를 바탕으로 초기 구조설계에서 활용할 수 있는 횡강성 증가율 예측값을 제시하는 것이다. 이를 위해서 먼저 Box형과 T형의 전형적인 평면을 갖는 60층의 초고층건물 기본모델을 생성하였다. 그리고 초고층건물의 횡강성 증가요인으로서 아웃리거의 추가, 재료강도의 증가, 코어 벽체 단면크기의 증가, 아웃리거 연결기둥 및 아웃리거 벽체의 단면크기 증가를 선정하였다. 다음에는 이 요인들을 기본모델에 적용하여 구조해석을 수행하고, 그 결과로부터 각 요인이 횡강성 증가에 미치는 영향과 상호관계 등을 분석하였다. 마지막으로, 이 분석결과를 바탕으로 초고층건물의 초기 구조설계를 위한 횡강성 증가요인별 강성증가율 예측값을 제안하였으며, 예제 초고층건물에 적용하여 그 타당성을 검토하였다.

비정형 초고층 건물의 변동 풍압 (Pressure Fluctuations on Tapered and Setback Tall Buildings)

  • 김용철;칸다 준;타무라 유키오;윤성원
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.97-104
    • /
    • 2013
  • Recent tall buildings tend to have unconventional shapes as a prevailing, which is effective for suppressing across-wind responses. Suppression of across-wind responses is a major factor in tall building projects, and the so called aerodynamic modification method is comprehensively used. The purpose of the present study is to investigate the pressure fluctuations on tapered and setback tall buildings, including peak pressures, power spectra and coherences through the synchronous multi-pressure sensing system techniques. And flow measurements around the models were conducted to investigate the condition of vortex shedding. The results show that by tapering and setback, different distributions of mean pressure coefficients at leeward surface were found, which is caused by the geometric characteristics of the models. And the power spectra of wind pressures at sideward surface become wideband and the peak frequencies are different depending on heights, which makes the correlation near the Strouhal component low or even negative. The differences in shedding frequencies were also confirmed by the flow fields around the models.

초고층건물의 통합구조설계시스템에서 STEP 엔티티 개발 (STEP Entities in Integrated Design System for Tall Buildings)

  • 송화철;조용수;김수환
    • 한국공간구조학회논문집
    • /
    • 제6권2호
    • /
    • pp.77-83
    • /
    • 2006
  • 초고층건물의 구조설계 정보에는 설계작업 프로세스 모델, 설계정보 전산모델, 기본설계 프로그램 및 설계 도서생성 프로그램 개발 등 여러 가지 특성화된 부분으로 구성되어 있다. 기존의 구조 설계정보는 통합적으로 관리되는 기능이 없기 때문에 건설 정보 교환에 대한 공유가 제대로 이루어지지 않고 있다. 이러한 설계정보의 데이터 수정 및 공유를 합리적으로 처리하기 위해서 통합설계에 대한 필요성이 증가하고 있다. 또한, 초고층 구조설계에서는 건설정보의 표준화가 이루어진 후 합리적인 정보교환을 위해서도 통합설계의 필요성이 대두되고 있다. 본 연구에서는 초고층건물의 구조설계를 위하여 STEP을 이용한 초고층 구조설계의 개념을 소개하고 초고층건물의 구조설계방법에 대한 질량 엔티티 및 기둥축소량 엔티티, 사용성평가 엔티티를 제안하고자 한다.

  • PDF

초고층 건축물 전력관리 시스템에 BIM 적용을 위한 기초적 연구 (A Fundamental Study on Applying BIM to Power Manage System of Super Tall Buildings)

  • 조찬원;권순호;이운재;노태임;옥종호
    • 한국CDE학회논문집
    • /
    • 제17권2호
    • /
    • pp.140-148
    • /
    • 2012
  • This study aims to provide power monitoring system for super tall buildings with 3D BIM (Building Information Modeling) technology. In order to realize this subject, standard specifications for BIM objects and attributes were studied through analyzing processes and elements of electrical utilities for power management systems applied for super tall buildings. These standard BIM specifications could be used by designers, contractors and facility operators, and thus could be helpful to realize BIM information sharing between multiple disciplines and construction phases. And further study has been suggested to develop standard specification and applications from this study.