• 제목/요약/키워드: Takagi-Sugeno Fuzzy Model

검색결과 242건 처리시간 0.032초

소속함수 의존성을 이용한 Takagi-Sugeno 퍼지 시스템의 관측기 기반 제어기 설계 (The Design of Membership-function-dependent Observer-based Controller Using Takagi-Sugeno Fuzzy Model)

  • 김호준;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1758-1759
    • /
    • 2011
  • 본 논문은 비선형 시스템의 소속함수 의존성을 이용한 관측기 기반 퍼지 제어기 설계 기법을 제시한다. Takage-Sugeno (T-S)퍼지 모델링을 이용해 비선형 시스템을 퍼지 모델로 표현한다. 시스템의 안정화 조건은 소속함수의 의존성을 이용한 리아푸노프 안정도 해석 방법을 이용해 유도된다. 안정화 조건은 선형 행렬 부등식으로 표현되며, 부등식의 해를 이용해 제어기의 이득값을 구한다. 모의실험을 통해 설계된 제어기의 타당성을 검증한다.

  • PDF

Takagi-Sugeno Fuzzy Model-based Iterative Learning Control Systems: A Two-dimensional System Theory Approach

  • Chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.169.3-169
    • /
    • 2001
  • This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...

  • PDF

Robust Stability Analysis for a Fuzzy Feedback Linearization Method using a Takagi-Sugeno Fuzzy Model

  • Kang, Hyung-Jin;Cheol Kwon;Lee, Hee-Jin;Park, Mignon
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.28-36
    • /
    • 1997
  • In this paper, robust stability analysis for the fuzzy feedback linearization regulator is presented. Well-known Takagi-Sugeno fuzzy model is used as the MISO nonlinear plant model. Uncertainty and disturbance are assumed to be included in the model structure with known bounds. For these structured uncertainty and disturbances, robust stability of the close system is analyzed in both input-output sense and Lyapunov sense. The robust stability conditions are proposed by using multivariable circle criterion and the relationship between input-output stability and Lyapunov stability. The proposed stability analysis is illustrated by a simple example.

  • PDF

T-S 퍼지 모델 기반 수중글라이더의 부력 및 모멘트 제어기 설계 (Design of Buoyancy and Moment Controllers of a Underwater Glider Based on a T-S Fuzzy Model)

  • 이경학;김도완
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2037-2045
    • /
    • 2016
  • This paper presents a fuzzy-model-based design approach to the buoyancy and moment controls of a class of nonlinear underwater glider. Through the linearization and the sector nonlinearity methodologies, the underwater glider dynamics is represented by a Takagi-Sugeno (T-S) fuzzy model. Sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop system in the format of linear matrix inequality (LMI). Simulation results demonstrate the effectiveness of the proposed buoyancy and moment controllers for the underwater glider.

비선형 제어 시스템의 샘플치 퍼지 추적 제어 (Sampled-data Fuzzy Tracking Control of Nonlinear Control Systems)

  • 김한솔;박진배;주영훈
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.159-164
    • /
    • 2017
  • In this paper, we propose a method of designing the sampled-data tracking controller for nonlinear systems expressed by the Takagi-Sugeno (T-S) fuzzy model. A sufficient condition that asymptotically stabilizes the state error between the linear reference model and the T-S fuzzy model is derived in terms of linear matrix inequalities. To this end, error dynamics are constructed, and the exact discretization method and the Lyapunov stability theory are employed in this paper. Finally, we validate the proposed method through the simulation example.

Adaptive Parameter Estimator Design for Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.40.5-40
    • /
    • 2001
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-S) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control.

  • PDF

Design of T-S(Takagi-Sugeno) Fuzzy Control Systems Under the Bound on the Output Energy

  • Kim, Kwang-Tae;Joh, Joog-Seon;Kwon, Woo-Hyen
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.44-49
    • /
    • 1999
  • This paper presents a new T-S(Tae-Sugeno) fuzzy controller design method satisfying the output energy bound. Maximum output energy via a quadratic Lyapunov function to obtain the bound on output energy is derived. LMI(Linear Matrix Inequality) problems which satisfy an output energy bound for both of the continuous-time and discrete-time T-S fuzzy control system are also derived. Solving these LMIs simultaneously, we find a common symmetric positive definite matrix P which guarantees the global asymptotic stability of the system and stable feedback gains K's satisfying the output energy bound. A simple example demonstrates validity of the proposed design method.

  • PDF

Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

  • Koo, Geun Bum;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.724-732
    • /
    • 2016
  • In this paper, a sampled-data observer-based decentralized fuzzy control technique is proposed for a class of nonlinear large-scale systems, which can be represented to a Takagi-Sugeno fuzzy system. The premise variable is assumed to be measurable for the design of the observer-based fuzzy controller, and the closed-loop system is obtained. Based on an exact discretized model of the closed-loop system, the stability condition is derived for the closed-loop system. Also, the stability condition is converted into the linear matrix inequality (LMI) format. Finally, an example is provided to verify the effectiveness of the proposed techniques.

인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계 (Design of Intelligent Controller with Time Delay for Internet-Based Remote Control)

  • 주영훈;김정찬;이호재;박진배
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.293-299
    • /
    • 2003
  • 본 논문은 인터넷 상에서 임의로 변화하는 입력지연을 갖는 불확실 퍼지 시스템의 지능형 강인 퍼지 제어기 설계를 논의한다. 임의로 변화하는 입력지연은 유한개의 상태를 갖는 마코프 확률과정으로 표현된다. 디지털 안정화기를 설계하기 위하여 연속시간 Takagi-Sugeno 퍼지 시스템을 이산화하며 제어기의 입출력단에 영차의 샘플/홀드 함수를 가정한다.이산화된 시스템은 확률적 과정에 따라 변화하는 도약 시스템으로 표현된다. 확률적 강인 안정가능성 조건은 선형 행렬 부등식의 형태로 표현된다.

무인잠수정의 T-S 퍼지 모델기반 경로점 유도제어 (T-S Fuzzy Model-based Waypoints-Tracking Control of Underwater Vehicles)

  • 김도완;이호재;서주노
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.526-530
    • /
    • 2011
  • This paper presents a new fuzzy model-based design approach for waypoints-tracking control of nonlinear underwater vehicles (UUVs) on a horizontal plane. The waypoints-tracking control problem is converted into the stabilization one for the error model between the given nonlinear UUV and the waypoints. By using the sector nonlinearity, the error model is modeled in Takagi-Sugeno's form. We then derive stabilization conditions for the error model in the format of linear matrix inequality. A numerical simulation is provided to illustrate the effectiveness of the proposed methodology.