• Title/Summary/Keyword: Tag chip

Search Result 129, Processing Time 0.021 seconds

Development of Embedded RFID R/W System Using PXA255 ARM Chip (PXA255 ARM칩을 활용한 임베디드 RFID R/W 시스템 개발)

  • Hwang, G.H.;Jang, W.T.;Sim, H.J.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.61-67
    • /
    • 2006
  • In this paper it was introduced that embedded RFID Reader /Writer system including PXA255 ARM chip which enables the Tag signal to be used by data and video processing via IEEE 802.11 communication protocol. Embedded RFID R/W middle ware was developed which transmit the searched result in the data base using the received Tag signal via IEEE 802.11 communication protocol. Developed embedded RFID R/W system was composed of three parts - PXA255 ARM chid (Core Part) 13.56 MHz RFID Reader /Writer, wireless LAN for data communication with server and TFT-LCD terminal. Once this system receives the Tag signal through the serial port, it transmits the data through the wireless LAN to the server and it displays the received image data which was processed by the server onto the TFT-LCD screen. Embedded RFID R/W Middle ware transmits the received Tag signal from RFID R/W to the embedded system, which activates the socket program to connect to the window server via IEEE 802.11 communication protocol and transmits the Tag signal. Window server program searches the Database using this Tag information and displays the result on to the TFT-LCD window in the embedded system via IEEE 802.11 protocol.

Design of the Crab label tag with a loop matching feed and a modified dipole structure at 900 MHz

  • Choi, Eui-Sun;Lee, Hak-Yong;Lee, Jin-Seong;Lee, Kyoung-Hwan;Lee, Sa-Won;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.551-555
    • /
    • 2011
  • The Crab label tag with a loop matching feed and a modified dipole antenna structure was proposed. The antenna impedance is conjugated easily to a radio frequency identification IC chip impedance by a loop matching feed. The reading range of the crab structure tag is 0.9-1.0 m from the upper side of the formula milk can lid. The fabricated label tag size is $44.0{\times}44.0mm^2$. The operating frequency at -3 dB return loss is 861.0-929.0 MHz, and the maximum reading range at the anechoic chamber is 1.5 m.

A Study on the Data Anti-collision using Time-domain Procedure on RFID(Radio Frequency Identification) System (무선인식 시스템에서 시간절차를 이용한 데이터 충돌 방지에 관한 연구)

  • 강민수;신석균;이준호;이동선;유광균;박영수;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.155-161
    • /
    • 2001
  • In this paper, the method is suggested to prevent data collision or damage on RFID(Radio Frequency Identification) system, in case a reader reading multi-tag simultaneously, using binary-search algorithm and Time-domain anti-collision procedure at reader and tag, respectively. The RFID system is designed that Reader enable to communicate with Tag on 13.56MHz bandwidth which is ISM(Industrial Science Medical) bandwidth, antennas of Tag part are designed using MCRF335 Chip. When RF communication is achieved between reader and tag, in case that data is transmitted to reader pass through multiple tags simultaneously, a study on the anti-collision method for the situation that the data collision occurs is performed.

  • PDF

Consideration of RFID H/W System Implementation for Driving T5557 Tag Chip (T5557 Tag 칩 동작을 위한 RFID의 H/W 구현 방안)

  • Jo, Heung-Kuk;Kim, Tae-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.41-42
    • /
    • 2011
  • RFID/USN은 여러 산업분야 및 실생활에 많은 활용이 기대되는 분야이다. 그 중 RFID는 교통카드 및 자산관리, 물류관리, 출입통제 등 여러 분야에서 적용되고 있다. 최근 군부대에서까지 RFID 시스템을 활용한 'u국방' 체제 확립에도 그 적용이 확산되고 있다. 그러나 RFID 시스템의 경우, Tag의 규격 및 프로토콜에 따라 Reader의 전반적인 사양이 달라지는 문제가 발생하고 있다. 본 연구에서는 이러한 문제에 착안하여 ATmel사의 읽기/쓰기가 가능한 IDIC인 T5557을 활용하여 RFID 시스템을 구현하고, 임의로 설정한 Tag ID 정보를 이용하여 터미널 프로그램을 통해 수신 가능함을 보였다.

  • PDF

An RFID Tag Using a Planar Inverted-F Antenna Capable of Being Stuck to Metallic Objects

  • Choi, Won-Kyu;Son, Hae-Won;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.216-218
    • /
    • 2006
  • This letter presents the design for a low-profile planar inverted-F antenna (PIFA) that can be stuck to metallic objects to create a passive radio frequency identification (RFID) tag in the UHF band. The designed PIFA, which uses a dielectric substrate for the antenna, consists of a U-slot patch for size reduction, several shorting pins, and a coplanar waveguide feeding structure to easily integrate with an RFID chip. The impedance bandwidth and maximum gain of the tag antenna are about 0.3% at 914 MHz for a voltage standing wave ratio (VSWR) of less than 2 and 3.6 dBi, respectively. The maximum read range is about 4.5 m as long as the tag antenna is on a metallic object.

  • PDF

Folded Loop Antennas for RFID Appilication (RFID 응용을 위한 폴디드-루프 안테나)

  • Choi, Tea-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.199-202
    • /
    • 2007
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm, and the size of the tag antenna can be reduced up to kr=0.27(2 cm2). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

  • PDF

Chip Impedance Evaluation Method for UHF RFID Transponder ICs over Absorbed Input Power

  • Yang, Jeen-Mo;Yeo, Jun-Ho
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.969-971
    • /
    • 2010
  • Based on a de-embedding technique, a new method is proposed which is capable of evaluating chip impedance behavior over absorbed power in flip-chip bonded UHF radio frequency identification transponder ICs. For the de-embedding, four compact co-planar test fixtures, an equivalent circuit for the fixtures, and a parameter extraction procedure for the circuit are developed. The fixtures are designed such that the chip can absorb as much power as possible from a power source without radiating appreciable power. Experimental results show that the proposed modeling method is accurate and produces reliable chip impedance values related with absorbed power.

The Realization of RFID Tag Data Communication System Using CC1020 (CC1020을 이용한 RFID Tag 데이터 통신 시스템 구현)

  • Jo, Heung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.833-838
    • /
    • 2011
  • RFID system in manufacturing industry is used to collect, categorize, and process the data of products. To install RFID system for a large factory, a large amount of wired data communication network is necessary for RS232 communication. If the installed location of RFID system in the factory is changed or extended, a reinstallment is required for the already installed wired data network. A large amount of time/financial reinvestment is necessary for such reinstallation. By using wireless data communication network, however, the initial installation and reinstallation are very simple. In this paper, we implemented a wireless communication system and RFID system. We used the CC1020 chip for wireless communication system and EM4095 chip for RFID system. CC1020 chip enables highly-reliable data communication, and by setting a simple status register, it can switch between transmitting/receiving status and it can choose the desired frequency of either 400 MHz or 900 MHz. Also, Communication range is 50 m, if external antenna is used. EM4095 is a chip for RFID reader system with the carrier frequency of 125 KHz. This chip can implement the reader system by connecting a small number of components. And EM4100 was used for RFID system. EM4100 is read-only type. Atmega128 is used to control a wireless communication system and RFID system. We confirm that the system can communicate without error up to 50 m from sender. In the paper, the circuit diagram and operation program for CC1020 and RFID system are presented. The system used in the experiment is shown in pictures, and the data movement pattern of CC1020 is shown in the diagram, and the performance of each transmission method is presented.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

Design Consideration of the Voltage Multiplier of UHF RFID Tag for Increased Reading Range (인식거리 향상을 위한 UHF 대역 RFID 태그용 전압체배기 설계)

  • Lee, Jong-Wook;Lee, Bom-Son
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • We investigated the input impedance characteristics of UHF-band RFID tag chip for increased reading range. A voltage multiplier designed using 0.4 ${\mu}m$ $zero-V_T$ MOSFET showed that DC output voltage of 2 V can be obtained using standard CMOS process. The input impedance of the voltage multiplier was examined to achieve impedance level for maximum reading distance using analytical and numerical approaches. The input impedance of the voltage multiplier could be varied in a wide range by selecting the size of MOSFET and the number of multiplying stages of the voltage multiplier, and thus, the impedance level required for the tag antenna can be obtained in presence of other tag circuit blocks.

  • PDF