• Title/Summary/Keyword: Tag chip

Search Result 129, Processing Time 0.027 seconds

Microarray Analysis of Differentially Expressed Genes between Cysts and Trophozoites of Acanthamoeba castellanii

  • Moon, Eun-Kyung;Xuan, Ying-Hua;Chung, Dong-Il;Hong, Yeon-Chul;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • Acanthamoeba infection is difficult to treat because of the resistance property of Acanthamoeba cyst against the host immune system, diverse antibiotics, and therapeutic agents. To identify encystation mediating factors of Acanthamoeba, we compared the transcription profile between cysts and trophozoites using microarray analysis. The DNA chip was composed of 12,544 genes based on expressed sequence tag (EST) from an Acanthamoeba ESTs database (DB) constructed in our laboratory, genetic information of Acanthamoeba from TBest DB, and all of Acanthamoeba related genes registered in the NCBI. Microarray analysis indicated that 701 genes showed higher expression than 2 folds in cysts than in trophozoites, and 859 genes were less expressed in cysts than in trophozoites. The results of real-time PCR analysis of randomly selected 9 genes of which expression was increased during cyst formation were coincided well with the microarray results. Eukaryotic orthologous groups (KOG) analysis showed an increment in T article (signal transduction mechanisms) and O article (posttranslational modification, protein turnover, and chaperones) whereas significant decrement of C article (energy production and conversion) during cyst formation. Especially, cystein proteinases showed high expression changes (282 folds) with significant increases in real-time PCR, suggesting a pivotal role of this proteinase in the cyst formation of Acanthamoeba. The present study provides important clues for the identification and characterization of encystation mediating factors of Acanthamoeba.

Design of Efficient 8bit CMOS AD Converter for SOC Application (SOC 응용을 위한 효율적인 8비트 CMOS AD 변환기 설계)

  • Kwon, Seung-Tag
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.22-28
    • /
    • 2008
  • This paper designed a efficient 8-bit CMOS analog-to-digital converter(ADC) for an SOC(System On Chip) application. The architecture consists of two modified 4-bit full-flash ADCs, it has been designed using a more efficient architecture. This is to predict roughly the range in which input signal residers and can be placed in the proximity of input signal based on initial prediction. The prediction of input signal is made available by introducing a voltage estimator. For 4-bit resolution, the modified full-flash ADC need only 6 comparators. So a 8-bit ADC require only 12 comparators and 32 resistors. The speed of this ADC is almost similar to conventional full-flash ADC, but the die area consumption is much less due to reduce numbers of comparators and registors. This architecture uses even fewer comparator than half-flash ADC. The circuits which are implemented in this paper is simulated with LT SPICE tool of computer.

Design and Fabrication of USN/RFID Module for Intelligent Wireless Sensor Network (지능형 무선 센서네트워크 구현을 위한 USN/RFID 모듈의 설계 및 제작에 관한 연구)

  • Kang Ey Goo;Chung Hun-Suk;Lee Jun-Hwan;Hyun Deuk Chang;Hwang Sung-Il;Song Bong-Seob;Lee Sang-Hun;Kim Young-Jin;Oh Sang-Ik;Ju Seung-Ho;Lee Se-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • This paper was proposed Intelligent and wireless USN/RFID module system that can overcome disadvantage of existing RFID system with no sensing module and wire communication. The proposed USN/RFID system was designed and fabricated. After fabricating new system, we analyzed the characteristics of USN/RFID module. After design VCO block that is point circuit to develop next generation system one chip of RFID system, we were carried out simulation and verified the validity. this paper was showed that VCO system was enough usable in wireless network module. USN/RFID Reader module shows superior result that validity awareness distance corresponds to 30 M in the case of USN and to 5 M in RFID Reader's case and 900 MHz of commercial frequency does practical use enoughly in range of high frequency. The USN/RFID Reader module is considered to act big role to Ubiqitous industry offering computing surrounding of new concept that is intelligence type service and that was associated to real time location system(RTLS), environment improvement/supervision, national defense, traffic administration etc.

A 900 MHz RFID Receiver with an Integrated Digital Data Slicer (디지털 데이터 슬라이서가 집적된 900 MHz 대역의 RFID 수신단)

  • Cho, Younga;Kim, Dong-Hyun;Kim, Namhyung;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, a receiver has been developed in a $0.11-{\mu}m$ CMOS technology for 900 MHz RFID communication system applications. The receiver is composed of an envelope detector, a low-pass-filter, a comparator, D flip-flops, as well as an oscillator to provide the clock for digital blocks. The receiver is designed for low power consumption, which would be suitable for passive RFID tags. In this circuit, a digital data slicer was employed instead of the conventional analog data slicer in order to reduce the power consumption. The clock frequency is 1.68 MHz and the circuit operates with a power consumption as small as $5{\mu}W$. The chip size is $325{\mu}m{\times}290{\mu}m$ excluding the probing pads.

Design of a Wireless Self-Powered Temperature Sensor for UHF Sensor Tags (무선 전력 구동 센서 태그 내장형 온도센서의 설계)

  • Kim, Hyun-Sik;Cho, Jung-Hyun;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.1-6
    • /
    • 2007
  • Wireless Self-Powered Temperature Sensor for UHF Sensor Tags which are basic device for construction of ubiquitous sensor network is proposed. The key parameters of the target specification are resolution of $0.1\;^{\circ}C$ per output bit, below 1.5 V of operating voltage and below 5 uW of power consumption during sensing operation. Temperature sensor circuit consists of PTAT current generator, band gap reference circuit generating both reference voltage and current, Sigma-Delta Converter, and Digital Counter. Simulated maximum resolution was $0.23\;^{\circ}C/bit$ in 11-bit output. The proposed temperature sensor was fabricated by using a 0.25 m CMOS process. The chip area is $0.32\;{\times}\;0.22\;mm$ and the operating frequency is 2 MHz. Measured resolution from fabricated temperature sensor was $4\;^{\circ}C/bit$ in 8-bit output for the temperature range from $10^{\circ}C$ to $80^{\circ}C$.

VLIS Design of OCB-AES Cryptographic Processor (OCB-AES 암호 프로세서의 VLSI 설계)

  • Choi Byeong-Yoon;Lee Jong-Hyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1741-1748
    • /
    • 2005
  • In this paper, we describe VLSI design and performance evaluation of OCB-AES crytographic algorithm that simulataneously provides privacy and authenticity. The OCB-AES crytographic algorithm sovles the problems such as long operation time and large hardware of conventional crytographic system, because the conventional system must implement the privancy and authenticity sequentially with seqarated algorithms and hardware. The OCB-AES processor with area-efficient modular offset generator and tag generator is designed using IDEC Samsung 0.35um standard cell library and consists of about 55,700 gates. Its cipher rate is about 930Mbps and the number of clock cycles needed to generate the 128-bit tags for authenticity and integrity is (m+2)${\times}$(Nr+1), where m and Nr represent the number of block for message and number of rounds for AES encryption, respectively. The OCB-AES processor can be applicable to soft cryptographic IP of IEEE 802.11i wireless LAN and Mobile SoC.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

A review on inorganic phosphor materials for white LEDs (백색 발광다이오드(White LEDs)용 무기형광체 재료의 연구개발 현황)

  • Hwang, Seok Min;Lee, Jae Bin;Kim, Se Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2012
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8$ : $Eu^{2+}$, $MAlSiN_3$ : $Eu^{2+}$ M-SiON (M = Ca, Sr, Ba), ${\alpha}/{\beta}$-SiAlON : $Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440~460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Design of logic process based 256-bit EEPROM IP for RFID Tag Chips and Its Measurements (RFID 태그 칩용 로직 공정 기반 256bit EEPROM IP 설계 및 측정)

  • Kim, Kwang-Il;Jin, Li-Yan;Jeon, Hwang-Gon;Kim, Ki-Jong;Lee, Jae-Hyung;Kim, Tae-Hoon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1868-1876
    • /
    • 2010
  • In this paper, we design a 256-bit EEPROM IP using only logic process-based devices. We propose EEPROM core circuits, a control gate (CG) and a tunnel gate (TG) driving circuit, to limit the voltages between the devices within 5.5V; and we propose DC-DC converters : VPP (=+4.75V), VNN (-4.75V), and VNNL (=VNN/3) generation circuit. In addition, we propose switching powers, CG_HV, CG_LV, TG_HV, TG_LV, VNNL_CG, VNNL_TG switching circuit, to be supplied for the CG and TG driving circuit. Simulation results under the typical simulation condition show that the power consumptions in the read, erase, and program mode are $12.86{\mu}W$, $22.52{\mu}W$, and $22.58{\mu}W$ respectively. Furthermore, the manufactured test chip operated normally and generated its target voltages of VPP, VNN, and VNNL as 4.69V, -4.74V, and -1.89V.