• Title/Summary/Keyword: Tactile information

Search Result 186, Processing Time 0.027 seconds

3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind (시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑)

  • Yoon, Myoung-Jong;Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

Effects of Color Properties and Subjective Sensation on the Preference for Cotton Denim Fabrics (면 데님소재의 색채 특성과 주관적 감각이 선호도에 미치는 영향)

  • Kim, Yeowon;Meng, Yu;Choi, Jongmyoung
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.55-64
    • /
    • 2017
  • This study was performed to help the denim fabric planning which reflects the sensibility preference of university students. Objective characteristics, like color properties and mechanical properties, in 8 denim fabrics (5 cotton 100% fabrics and 3 cotton/polyurethane blended fabrics) were evaluated. And the color preference, subjective sensation and tactile preference of denim fabrics were investigated among the university students. The effect of color preference and tactile preference of denim fabrics on the purchase preference of denim slacks was also examined. Color preference of denim fabrics showed a significant difference according to the kind of denim fabrics. University students preferred purple blue denim fabrics that was measured low $-b^*$ value and low $C^*$ value among the color properties of denim fabrics. Among the mechanical properties of denim fabrics, surface property like MMD, MIU and SMD as well as shear property like 2HG5 were important elements affecting subjective sensation. While, tactile preferences showed a significant difference according to the fabrics. The tactile preferences of cotton/polyurethane blended denim fabrics was highly preferred, and that of heavy 100% cotton denim fabric was lowly preferred. And the subjective sensation affecting tactile preferences were in order of smoothness, softness, lightness. It is concluded that the color preference and tactile preference influenced upon the purchase preference of denim slacks, and color preference had a bigger effect upon the purchase preference.

Tactile Sensing for Virtual Interaction as a Part of Ubiquitous Game Development (유비쿼터스게임의 상호작용 구성요소 개발을 위한 촉각응용)

  • Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1062-1068
    • /
    • 2007
  • In order to design and develop a ubiquitous game, it is necessary to develop a natural and flexible interface between the real world and the virtual world, based on social and physical context awareness. We design user interface model and the tactile sensing system that performs virtual interaction and collection of the sensor data. It is sensitive so the collected data should be filtered, rearranged and analyzed. This information is quite different from stylus input, keyboard, button or mouse for interaction. We detect kicked 3D force position of a ball, moment of area, moment of inertia and modified ball shape using tactile sensing system and analyzed data. The results demonstrate that the proposed approach is desirable and robust as well as the results can be used realistic actions and reactions considering attack force and to make interesting environments for ubiquitous game.

Motion-Recognizing Game Controller with Tactile Feedback (동작인식 및 촉감제공 게임 컨트롤러)

  • Jeon, Seok-Hee;Kim, Sang-Ki;Park, Gun-Hyuk;Han, Gab-Jong;Lee, Sung-Kil;Choi, Seung-Moon;Choi, Seung-Jin;Eoh, Hong-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.1-6
    • /
    • 2008
  • This paper proposes a game controller that provides user motion input and tactile feedback display, in addition to the traditional button-type input. The device utilizes both an accelerometer and an infrared camera in order to estimate 3D position and to recognize user motion. The information from the accelerometer and the camera are integrated for better performance. Various tactile sensations are presented using a voice-coil type vibrator. We apply the proposed controller to a motion-based game and validate its usability.

  • PDF

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

Clustering Kansei Factors for the Roughness of Plastic Surface Based on Frequency Distribution (플라스틱 표면 조도의 변화에 따른 빈도분포에 대한 감성공학적 군집분석)

  • Jun, Chang Lim
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.366-370
    • /
    • 2007
  • New product development requires information on customers' emotions such as vision, auditory, olfactory, gustatory, or tactile perceptions. In this study, tactile sense which has not been well studied compared to other senses, was measured and statistically analysed for different surface roughnesses of plastic samples. The emotional responses of 37 pairs of positive and negative adjectives describing tactile senses were collected and analysed through the questionnaire to find the correlation between adjectives and surface roughness. Frequency of the first preference for each adjective on four different roughness is obtained, and used for the statistical studies such as factor analysis, multidimensional scaling, or clustering.

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

A Study on Clustering Kansei Factors for the Surface Roughness of Materials

  • Jun, Chang Lim;Choi, Kyungmee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2003
  • The human sensibility product design requires information on consumer's emotions such as vision, auditory, olfactory, gustatory, or tactile perceptions. In this study, tactile sense which has not been well studied compared to other senses, is measured and statistically analysed. The emotional responses of 37 pairs of positive and negative adjectives describing tactile senses are collected and analysed through the questionnaire to find the correlation between adjectives and surface roughness of the sample. Mean ranks for 37 pairs of adjectives on four samples are obtained, and used to cluster these adjectives by factor analysis, multidimensional scaling, or cluster analysis.

Effect of Multimodal cues on Tactile Mental Imagery and Attitude-Purchase Intention Towards the Product (다중 감각 단서가 촉각적 심상과 제품에 대한 태도-구매 의사에 미치는 영향)

  • Lee, Yea Jin;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.3
    • /
    • pp.41-60
    • /
    • 2021
  • The purpose of this research was to determine whether multimodal cues in an online shopping environment could enhance tactile consumer mental imagery, purchase intentions, and attitudes towards an apparel product. One limitation of online retail is that consumers are unable to physically touch the items. However, as tactile information plays an important role in consumer decisions especially for apparel products, this study investigated the effects of multimodal cues on overcoming the lack of tactile stimuli. In experiment 1, to explore the product, the participants were randomly assigned to four conditions; picture only, video without sound, video with corresponding sound, and video with discordant sound; after which tactile mental imagery vividness, ease of imagination, attitude, and purchase intentions were measured. It was found that the video with discordant sound had the lowest average scores of all dependent variables. A within-participants design was used in experiment 2, in which all participants explored the same product in the four conditions in a random order. They were told that they were visiting four different brands on a price comparison web site. After the same variables as in experiment 1, including the need for touch, were measured, the repeated measures ANCOVA results revealed that compared to the other conditions, the video with the corresponding sound significantly enhanced tactile mental imagery vividness, attitude, and purchase intentions. However, the discordant condition had significantly lower attitudes and purchase intentions. The dual mediation analysis also revealed that the multimodal cue conditions significantly predicted attitudes and purchase intentions by sequentially mediating the imagery vividness and ease of imagination. In sum, vivid tactile mental imagery triggered using audio-visual stimuli could have a positive effect on consumer decision making by making it easier to imagine a situation where consumers could touch and use the product.

A mono-material tactile sensor with multi-sensing properties

  • Shida, Katsunori;Yuji, Junnichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.587-592
    • /
    • 1994
  • To realize artificial device with sensing ability of the human skin, a mono-material tactile sensor with three sensing functions made of some elastic thin electro-conductive rubber sheet with eight latticed patch elements is proposed. This trial sensor provides the information of three kinds of model material characteristics such as thermal property, hardness property and the surface situation of materials by setting up three kinds of surface models as test materials. It can be finally expected to estimate unknown model materials by analyzing the data of the sensor.

  • PDF