• Title/Summary/Keyword: Tactile information

Search Result 185, Processing Time 0.028 seconds

A Study on Tactile Sensation Application for Computer Game and Virtual Reality (컴퓨터게임과 가상현실을 위한 촉각 응용에 관한 연구)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.646-654
    • /
    • 2002
  • The human sense of touch provides us with an important source of information about our surroundings. Because of its unique position at interface between our bodies and the out world, touch sensation supplies sensory data which helps us manipulate and recognize objects and warn of harmful situation. But tactile sensation was recognized less important than visual sense and auditory sense but it plays an important immersing role in virtual reality and computer game. Tactile sensation can be used to influence to objects according to power and supplied sensory feedback to the player in a virtual environment. This paper investigated the characteristics of tactile sensation of human being and proposed method of sturdy using force sensing sensor, simple force modeling and data structure form for virtual reality and computer game. As a result, force distribution, depth, center point can be calculated using sensor output and this information is very effective to specific position for actions and reactions. This study can used as basic information for tactile sensation and it's application in computer game and virtual realty.

  • PDF

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

Development of Braille Display Using Dielectric Elastomer (고분자 유전체를 이용한 시각 장애인용 점자 출력기 개발)

  • 이상원;구익모;정광목;이성일;최후곤;전재욱;남재도;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.961-970
    • /
    • 2004
  • Tactile sensation is one of the most important sensory functions along with the auditory sensation for the visually impaired since it replaces the visual one of the persons with sight. In this paper, we present a tactile display device as a dynamic Braille display that is the unique tool f3r exchanging information among them. The tactile cell of the Braille display proposed is based on the dielectric elastomer, which is one of the electroactive polymers. It has advantageous features over the existing ones with respect to intrinsic softness, ease of fabrication, cost effectiveness and miniaturization. We introduce a new idea for actuation as well as additional considerations such as the driving circuit that makes it possible to drive multiple tactile cells in a high speed. Also, we describe the actuating mechanism of the Braille pin in details capable of realizing the enhanced spatial density of the tactile cells. Finally, results of psychophysical experiments are given to evaluate its effectiveness.

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

The Effect of Consumer Need for Tactile Cues on Purchase Intention in Internet Shopping Mall - An Moderating Effect of Perceived Risk, Purchased Experience - (인터넷 쇼핑몰 이용자의 촉각단서 윽구가 의류상품 구매행동에 미치는 영향에 관한 연구 - 구매경험, 지각된 위험의 조절효과 -)

  • Kwon, So-Young;Lee, Jin-Young;Oh, Hee-Sun;Suh, Yong-Han
    • Fashion & Textile Research Journal
    • /
    • v.6 no.5
    • /
    • pp.618-624
    • /
    • 2004
  • This study is to explore how consumers' needs for tactile cues affect their purchasing behaviors in the internet shopping mall. Since previous studies about internet shopping malls are mainly performed on the primary factors of perceived risk, there are insufficient studies of tactile cues for apparel products. Emphasis of this study is placed on verifying the following hypothesis; it is expected that consumers' needs for tactile cues affect apparel purchasing behaviors in internet shopping. The questionnaire was administered to 20 to 30 year old male and female respondents who are either students or businessmen living in the Busan area. 150 questionnaires were completed and collected for data analysis. The data were, using SPSS 10. 0 for Window, statistically analyzed by frequency and factor analysis for VARIMAX, Cronbach's coefficient and Linear regression analysis. Data were, using SPSS 10. 0 for Window, statistically analyzed by frequency and factor analysis for VARIMAX, Cronbach's coefficient, and ANOVA. The results of data analysis are as follows: First, the tactile cues negatively affect purchase intentions of consumers. This shows that apparel internet shoppers who have high desire for tactical cues tend to avoid purchasing products through the internet. Second, the factor analysis of the moderating effect on perceived risks shows that the perceived risks significantly moderate both the tactile cues and purchase intention of consumers. Third, analysis of purchased experience also shows that purchased experiences significantly moderate both the tactile cues and purchase intention.

Effective Cueing Method That Increases Selective Muscle Activation of the Serratus Anterior in Healthy Adults (건강한 성인의 전거근의 선택적인 활성화를 향상시키는 효과적인 큐잉 방법)

  • Choi, Jong-Jae;Song, Chang-Ho
    • PNF and Movement
    • /
    • v.19 no.2
    • /
    • pp.269-278
    • /
    • 2021
  • Purpose: This study aimed to investigate effective cueing methods for selective muscle activation of the serratus anterior. Methods: Based on the inclusion criteria, 26 healthy adults, both males and females, were recruited for the measurement of muscle activation of the upper trapezius and serratus anterior muscles while performing basic movements in knee push-up plus (KPP) and dynamic hug (DH) positions using five different cueing methods. An electromyogram was used to measure muscle activation, and both muscle activation and muscle ratio (serratus anterior/upper trapezius) were compared during the basic movements and different cueing methods. The cueing methods were trapezius verbal cueing, trapezius verbal cueing + trapezius tactile cueing, emphasis verbal cueing, serratus anterior tactile cueing, and trapezius verbal cueing + trapezius tactile cueing + serratus anterior tactile cueing. Results: The results of the study showed that there was a significant difference in the muscles for the two exercises (p < 0.05). There was also a significant difference between the cueing methods (p < 0.05). The correlative effect between the muscles and cueing methods was also significant (p < 0.05). The muscle ratio in trapezius verbal cueing + trapezius tactile cueing + serratus anterior tactile cueing during KPP and DH was higher than in basic movements and other cueing methods. This confirms that trapezius verbal cueing + trapezius tactile cueing + serratus anterior tactile cueing is an effective cueing method for selective activation of the serratus anterior during KPP and DH. This study also demonstrated that cueing by a therapist may both increase and decrease selective muscle activation. Conclusion: Through this study, an effective cueing method to selectively activate the serratus anterior may be suggested, and the results of this study may provide basic information regarding future studies and clinical practice.

Recognition of contact surfaces using optical tactile and F/T sensors integrated by fuzzy fusion algorithm (광촉각 센서와 힘/역학센서의 퍼지융합을 통한 접촉면의 인식)

  • 고동환;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.628-631
    • /
    • 1996
  • This paper proposes a surface recognition algorithm which determines the types of contact surfaces by fusing the information collected by the multisensor system, consisted of the optical tactile and force/torque sensors. Since the image shape measured by the optical tactile sensor system, which is used for determining the surface type, varies depending on the forces provided at the measuring moment, the force information measured by the f/t sensor takes an important role. In this paper, an image contour is represented by the long and short axes and they are fuzzified individually by the membership function formulated by observing the variation of the lengths of the long and short axes depending on the provided force. The fuzzified values of the long and short axes are fused using the average Minkowski's distance. Compared to the case where only the contour information is used, the proposed algorithm has shown about 14% of enhancement in the recognition ratio. Especially, when imposing the optimal force determined by the experiments, the recognition ratio has been measured over 91%.

  • PDF

Development of Tactile Display for the Blind in Japan (일본의 시각장애인을 위한 촉각디스플레이 개발)

  • Han, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Research and development of Assistive Technology (AT) for blind people is primarily focused on assisting mobility and improving access to information. Some particularly useful devices for aiding access to information and communication are DAISY players used with talking books, screen readers for reading screens, video magnifiers to aid low vision, Braille displays, and Braille PDAs. These essential devices have been successfully commercialized and have assisted many visually impaired people. Assistive technology devices for visually impaired people are called sensory substitution devices, because these devices substitute tactile or auditory functions for visual functions. The tactile interfaces of sensory substitution devices such as Braille displays and Braille PDAs have a bimorph type of piezoelectric actuator that forms a Braille (pin) of the Braille cells by moving up and down. KGS Corporation of Japan has more than 80% share of the worldwide market for these Braille cell actuators. Commercializing it for the first time in the world. This paper reviews the various endeavors in Japan in the research and development of tactile displays, such as Braille displays and Braille PDAs. Furthermore, it discusses sensory substitution devices that use tactile displays, focusing especially on the rotating Braille display we have developed.

Polymer/Metal Based Flexible MEMS Biosensors for Nerve Signal Monitoring and Sensitive Skin

  • Kim, Yong-Ho;Hwang, Eun-Soo;Kim, Yong-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper presents fabrication process and experimental results of two different types of flexible MEMS biosensors based on polymer/metal multilayer processing techniques. One type of a biosensor is a microelectrode array (MEA) for nerve signal monitoring through implanting the MEA into a living body, and another is a tactile sensor capable of being mounted on an arbitrary-shaped surface. The microelectrode array was fabricated and its electrical characteristics have been examined through in vivo and in vitro experiment. For sensitive skin, flexible tactile sensor array was fabricated and its sensitivity has been analyzed. Mechanical flexibility of these biosensors has been achieved by using a polymer, and it is verified by implanting a MEA to an animal and mounting the tactile sensor on an arbitrary-shaped surface.

Tactile Transfer and Display Method using Data Glove and Vibration Motors Module (데이터 글로브와 진동모터를 이용한 촉각전달 및 제시 방법)

  • Kang, Hyung-Gu;Choi, Youngjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1138-1144
    • /
    • 2013
  • This paper proposes a tactile transfer and display method between a data glove and vibration motors module. The data glove is developed to capture the hand postures and to measure the grip forces. The measured data are simplified with the proposed 5-bit transfer and display algorithm, and the vibration motors module is developed to display the measured hand posture and grip force to the operator. The proposed 5-bit algorithm contains both an 8-step hand posture and 4-step grip force level information for tactile transfer to the vibration motors module. Also, the effectiveness of the proposed method is shown through several experiments.