• Title/Summary/Keyword: Table Position Control

Search Result 135, Processing Time 0.025 seconds

A Research on the Digital Controller of Switched Reluctance Motor Using DSP (DSP를 이용한 Switched Reluctance Motor의 디지털 제어기에 관한 연구)

  • 박성준;박한웅;김정택;추영배;이만형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.263-272
    • /
    • 1998
  • This paper presents the new control strategy that can minimizes the torque ripple by considering the magnetic nonlinearity and phase torque averlapping intervals, and describes the whole SRM drive system using proposed control method implemented by DSP(Digital Signal Processor). To do this, inductance and torque are, at first, measured according to the variation of rotor position angle while current is kept constant at predetermined several values. From these measured values, the entire inductance and torque for any current and rotor position are inferred by using neural network. And the waveform of the reference phase torque is determined for the torque ripple to be minimized considering the torque overlap between phases. The controller is designed for the actual torque obtained by the inferred torque look-up table using measured current and rotor position angle to track the predetermined reference phase torque by delta modulation technique. To perform a real time processing and ensure the reliability of the controller, DSP is implemented.

  • PDF

Development of the Air Floating Conveyor System for the Large Glass Sheet (대평판 글라스 이송용 공기 부상 이송장치의 개발)

  • Lee, Tae Geol;Yu, Jin Sik;Jung, Hyo Jae;Kim, Jong-Hyeong;Kim, Joon Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.635-642
    • /
    • 2013
  • We have prepared a DEMO conveyor device for conveying a large 8G class glass sheet using ahorizontal air-cushion system. This device consists of the body frame and the driving frame that are combined to realize a frame for conveying glass without any contact.The driving frame comprises an air flotation table (bed), drive roller supported at both ends, and ASU. Part of the ASU serves to control the airflow as the chamber consists of a porous pad and fan. Fiber filters replace the porous pad and axial fans serve as an air compressor. In addition, to determine the appropriate glass levitation from the air table, this study examined the design specifications of the applied filter (discharge speed of HEPA and ULPA filters, and flow rate) as well as the height of the and the proper supporting roller height (14mm). Then, after adjusting the position of the ASU and the number of ASUs required to configure the UNIT air floating C/V, we analyzed the height and flatness of the glass and derived the appropriate layout (1140-mm distance between ASUs).

Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools (CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발)

  • Chung, Chae-Il;Kim, Jong-Won;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

A Randomized Controlled Trial about the Levels of Radiation Exposure Depends on the Use of Collimation C-arm Fluoroscopic-guided Medial Branch Block

  • Baek, Seung Woo;Ryu, Jae Sung;Jung, Cheol Hee;Lee, Joo Han;Kwon, Won Kyoung;Woo, Nam Sik;Kim, Hae Kyoung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • Background: C-arm fluoroscope has been widely used to promote more effective pain management; however, unwanted radiation exposure for operators is inevitable. We prospectively investigated the differences in radiation exposure related to collimation in Medial Branch Block (MBB). Methods: This study was a randomized controlled trial of 62 MBBs at L3, 4 and 5. After the patient was laid in the prone position on the operating table, MBB was conducted and only AP projections of the fluoroscope were used. Based on a concealed random number table, MBB was performed with (collimation group) and without (control group) collimation. The data on the patient's age, height, gender, laterality (right/left), radiation absorbed dose (RAD), exposure time, distance from the center of the field to the operator, and effective dose (ED) at the side of the table and at the operator's chest were collected. The brightness of the fluoroscopic image was evaluated with histogram in Photoshop. Results: There were no significant differences in age, height, weight, male to female ratio, laterality, time, distance and brightness of fluoroscopic image. The area of the fluoroscopic image with collimation was 67% of the conventional image. The RAD ($29.9{\pm}13.0$, P = 0.001) and the ED at the left chest of the operators ($0.53{\pm}0.71$, P = 0.042) and beside the table ($5.69{\pm}4.6$, P = 0.025) in collimation group were lower than that of the control group ($44.6{\pm}19.0$, $0.97{\pm}0.92$, and $9.53{\pm}8.16$), resepectively. Conclusions: Collimation reduced radiation exposure and maintained the image quality. Therefore, the proper use of collimation will be beneficial to both patients and operators.

Development of microcomputer-based on-line measurement system. (마이크로컴퓨터를 이용한 온-라인 측정 시스템의 개발)

  • ;;Chung, Myung Kyoon;Lee, Dong In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.274-283
    • /
    • 1981
  • An inexpensive and very simple microcomputer-aided measurement system has been designed for on-line experiments, which perform simultaneously data acquisition, data recorditing, calculations with the data, and positioning of necessary sensors. Interfacting between the microcomputer and the data acquisition board which consists of A/D converter, analog multiplexer, and sample-and-holder, etc. has been done through IEEE-488 interface port and parallel user port both provided by the PET computer's main logic board. Data and control signals are transfered between devices without handshaking. By utilizing BASIC commands PEEK, POKE, SYS, USR which are offered by PET microcomputer, it is possible to link machine code subroutines into the main BASIC program. This facilitates ease of data transfer, programming, and speedy execution of the program. In addition, an X-Y scanning table has been concected to the system in order to automatically position measuring sensors along a pre-determined path of interest.

Estimation of End Milling Depth of Cuts Using the Cutting Force (절삭력을 이용한 엔드밀링 절입깊이 추정)

  • 최종근;양민상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1033-1037
    • /
    • 1997
  • In the end milling process, the information of axial and depths of cut plays an important role in adaptive control systems for precision machining and tool monitoring systems for unmanned machining. In general, it is not easy to know the depths of cut due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool and machining error in previous cutting. In addition to, even they are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggest an algorithm estimating the depths of cut based on cutting force sigal. The proposed algorithm can be applied in more extensive cutting situations, for example, presence of the tool wear, variation of work material hardness, etc.

  • PDF

Experiment for Position Accuracy Using Laser Scale Unit with 10 Nano-Meter Resoultion (10 nano-meter 분해능을 갖는 laser scale을 이용한 위치 결정 실험)

  • 임선종;정광조;최재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • This paper describes a positioning system for ultra-precision that will be utilized in semiconductor manufacturing field and precision machinery. This system is composed with laser scale unit with 10nm resolution, ball screw with LM guide, brushless DC servo motor, vibration isolator and is equipped in chamber for continuous measuring environment. The dynamic of table, the problem of servo control and the traceability for micro step motion are described. These data will be applied for getting more stable system with 50nm resolution.

  • PDF

Development of Stewart Platform installed Turntable for Manned Flight Virtual Training Simulator (턴테이블을 적용한 유인비행체 가상훈련 시뮬레이터용 스튜어트 플랫폼 개발)

  • SO, Sangwon;Woo, Jaehoon;Hong, Chunhan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.125-131
    • /
    • 2020
  • In order to study the correlation between the pilot's cognitive ability and recovery ability by applying a physical element that can cause spatial loss of position to the pilot, a turntable was installed on the top of the motion system to give a quantitative rotational error. We propose a method of simulating flight movement to reduce a difference in feeling and an intuitive method of forward kinematic analysis.

Terrain-referenced Underwater Navigation using Rao-Blackwellized Particle Filter (라오-블랙웰라이즈드 입자필터를 이용한 지형참조 수중항법)

  • Kim, Taeyun;Kim, Jinwhan;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.682-687
    • /
    • 2013
  • Navigation is a crucial capability for all types of manned or unmanned vehicles. However, vehicle navigation in underwater environments still remains a challenging problem since GPS signals for position fixes are not available in the water. Terrain-referenced underwater navigation is an alternative navigation technique that utilizes geometric information of the subsea terrain to correct drift errors due to dead-reckoning or inertial navigation. Terrain-referenced navigation requires the description of an undulating terrain surface as a mathematical function or table, which often leads to a highly nonlinear estimation problem. Recently, PFs (Particle Filters), which do not require any restrictive assumptions about the system dynamics and uncertainty distributions, have been widely used for nonlinear filtering applications. However, PF has considerable computational requirements which used to limit its applicability to problems of relatively low state dimensions. This study proposes the use of a Rao-Blackwellized particle filter that is computationally more efficient than the standard PF for terrain-referenced underwater navigation involving a moderate number of states, and its performance is compared with that of the extended Kalman filter algorithm. The validity and feasibility of the proposed algorithm is demonstrated through numerical simulations.

In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling (엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측)

  • 최종근;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF