• 제목/요약/키워드: TYPE OF DAMAGE

검색결과 2,307건 처리시간 0.033초

필로티형 콘크리트 전단벽 구조물의 능력스펙트럼기반 손상도 기준에 대한 연구 (A Study on Damage State Criteria based on Capacity Spectrum of Piloti-type RC Shear Wall Structures)

  • 황지현;박기태;박태원
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5199-5205
    • /
    • 2013
  • 최근 증가한 지진의 발생빈도에 비해 현존하는 건물 중 내진설계가 되지 않았거나 노후화, 구조특성 등으로 적절한 내진성능을 보유하지 않은 건물은 매우 많다. 특히 우리나라 건물 유형 중 하나인 필로티형 콘크리트 전단벽 구조물은 대부분 1층이 연층(soft story) 및 약층(weak story)으로 분류되기 때문에 지진에 의한 횡력에 저항할 수 있는 전단기능이 크게 결여되어 지진에 매우 취약하다. 본 연구에서는 필로티형 콘크리트 전단벽 구조물의 손상도 기준에 관한 연구를 수행하였다. 전단벽 시스템의 대표 유형 건물을 선정하여 구조해석을 통해 능력스펙트럼을 산출하였으며 능력스펙트럼의 형태를 기준으로 손상도 기준을 정의하였다.

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발 (A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC))

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • 제15권4호
    • /
    • pp.17-22
    • /
    • 2002
  • 미세 직경을 갖는 복합재료 나선형 스프링 (CS)가 광점퍼코드 (OJC)를 보강하기위한 매체로써 개발되었다. 이 스프링의 외경은 약 2~3mm로써 광점퍼코드에 갑작스런 측면 하중으로 부터 광섬유의 손실을 막기위해 삽입 보강할 수 있도록 제작되었다. 섬유 형태 (Y-type)와 밴드 형태 (B-type)의 복합재료 스프링이 제작되어 그 효과를 비교하였다. 측면 하중에 대한 기계적 특성은 동일 직경의 금속 스프링 및 일반 광점퍼코드의 물성치와 비교하여 제시하였다. 실험 결과로부터 복합재료 스프링이 보강된 광점퍼코드의 경우 굽힘에 대한 높은 저항력을 지니고 있음에 따라 광섬유의 내부 손상에 의한 광 손실의 감소률이 낮음을 알 수 있었다 얻어진 주요 결과들은: (1) Y-type의 CS의 경우 B-type과 비교하여 높은 측압 저항력을 지님을 알 수 있었다 (2) 일반 OJC와 비교하여 CS-OJC의 경우 광 손실이 현격이 낮음을 알 수 있었다. (3) 일반 스프링의 측압 하중시의 응력 분포 형태를 제시하였으며. 실험으로부터 얻어진 결과로부터 복합재료 스프링이 보강된 광점퍼 코드의 경우 매우 높은 구조적 안정성을 보임을 알 수 있었다.

Base Isolation System이 있는 건물의 지진하중에 대한 동적해석 (Semismic Analysis of Building Structures with Base Isolation System)

  • 이동근;이정석
    • 전산구조공학
    • /
    • 제3권1호
    • /
    • pp.71-81
    • /
    • 1990
  • Base isolation system은 구조물의 기초하부에 설치되며 지진에 의한 구조물의 피해를 감소시켜 준다. 지금까지 많은 공학들에 의해 여러가지 base isolation system이 개발되었으나 실용화된 것은 1970년대에 laminated rubber bearing(LR type)이 개발되고서부터 였다. 최근에는 laminated rubber bearing밑에 미끄럼판을 둔 새로운 base isolation system(SR type)이 개발되었다. 본 연구에서는 isolation system과 구조물의 여러가지 성질에 따른 isolation효과에 대한 연구를 수행하였다. 이 연구의 결과, isolaion system은 지진하중이 작용할 때 건물에 발생하는 피해를 상당히 감소시킴을 알 수 있으며, isolaion system의 주기가 길어짐에 따라 isolation효과는 증가함을 알 수 있다. 그리고 건물의 높이가 증가함에 따라 isolation효과는 줄어든다는 것을 알 수 있다. SR type isolation system이 있는 건물에 지진하중이 작용할 때, 건물내부에서 발생하는 가속도와 층간변위, 그리고 전체변위는 LR type의 경우보다 작으므로 보다 효율적이라는 것을 알 수 있다.

  • PDF

Effect of long term treatment of aqueous extract of Enicostemma littorale in Type 2 diabetic patients

  • Mansuri, Mustakim M;Goyal, Bhoomika R;Upadhyay, Umesh M;Sheth, Jayesh;Goyal, Ramesh K
    • Advances in Traditional Medicine
    • /
    • 제9권1호
    • /
    • pp.39-48
    • /
    • 2009
  • We have evaluated the effect of long term treatment of Enicostemma littorale (E. littorale) in type 2 diabetic patients taking pills of aqueous extract of E. littorale regularly as a complimentary medicine for at least 9 months. The effects of E. littorale on glycemic control, lipid profile, cardiac function and DNA damage in these patients were compared with those who had not been regular in taking E. littorale but regular in taking other conventional anti-diabetics. Our data suggest that, E. littorale can maintain normal blood glucose, serum insulin, serum triglycerides levels of type 2 diabetic patients if taken regularly. E. littorale also improves insulin sensitivity, and normalize disturbed lipogram and elevated creatinine levels, thereby produces beneficial effect in preventing cardiovascular complications and may preserve the kidney function. The finding that E. littorale also prevents DNA damage suggest a long term effect in diabetic patients. E. littorale thus can be considered as safe supplementary therapy for a long term and effective management of type 2 diabetic patients.

Health monitoring of reinforced concrete slabs subjected to earthquake-type dynamic loading via measurement and analysis of acoustic emission signals

  • Gallego, Antolino;Benavent-Climent, Amadeo;Infantes, Cristobal
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.385-398
    • /
    • 2011
  • This paper discusses the applicability of Acoustic Emission (AE) to assess the damage in reinforced concrete (RC) structures subjected to complex dynamic loadings such as those induced by earthquakes. The AE signals recorded during this type of event can be complicated due to the arbitrary and random nature of seismicity and the fact that the signals are highly contaminated by many spurious sources of noise. This paper demonstrates that by properly filtering the AE signals, a very good correlation can be found between AE and damage on the RC structure. The basic experimental data used for this research are the results of fourteen seismic simulations conducted with a shake table on an RC slab supported on four steel columns. The AE signals were recorded by several low-frequency piezoelectric sensors located on the bottom surface of the slab. The evolution of damage under increasing values of peak acceleration applied to the shake table was monitored in terms of AE and dissipated plastic strain energy. A strong correlation was found between the energy dissipated by the concrete through plastic deformations and the AE energy calculated after properly filtering the signals. For this reason, a procedure is proposed to analyze the AE measured in a RC structure during a seismic event so that it can be used for damage assessment.

Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs

  • Yurdakul, Ozgur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.521-543
    • /
    • 2015
  • Depending on the damage type as well as the level of damage observed after the earthquake, certain measures should be taken for the damaged buildings. In this study, structural repairing of two different types of damaged RC beam-column assembly by carbon fiber-reinforced polymer sheets is investigated in detail as a member repairing technique. Two types of 1:1 scale test specimens, which represent the exterior RC beam-column connection taken from inflection points of the frame, are utilized. The first specimen is designed according to the current Turkish Earthquake Code, whereas the second one represents a deficient RC beam-column assembly. Both of the specimens were subjected to cyclic quasistatic loading in the laboratory and different levels of structural damage were observed. The first specimen displayed a ductile response with the damage concentrated in the beam. However, in the second specimen, the beam-column joint was severely damaged while the rest of the members did not attain their capacities. Depending on the damage type of the specimens, the damaged members were repaired by CFRP wrapping with different configurations. After testing the repaired specimens, it is found that former capacities of the damaged members were mostly recovered by the application of CFRPs on the damaged members.

침적식 초음파-화학 제염 시 재료 및 공정 시간에 따른 부식 손상 특성 (Corrosion Damage Characteristics with Materials and Process Time in Ultrasonic-Chemical Decontamination of Immersion Type)

  • 이승준;현광룡;한민수;김성종
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.291-296
    • /
    • 2018
  • In this study, we carried out an ultrasonic-chemical decontamination process with immersion type, reproduced in the laboratory. The corrosion damage characteristics, depending on kind of materials and ultrasonic process time, were investigated. Inconel 600, which showed lower corrosion potential and higher corrosion current density than that of STS 316, revealed severer corrosion damage and higher weight-loss rate than STS 316. Weight-loss rate of Inconel 600 increased with increasing ultrasonic process time. On the other hands, STS 316 presented a negligibly small corrosion damage, which was almost indistinguishable from visual observation. There was no effect of ultrasonic process time on the weight-loss rate of STS 316.

연속체 손상역학에 따른 구조재료의 유한요소해석 (Finite element analysis of the structural material by the theory of continuum damage mechanics)

  • 김승조;김위대
    • 오토저널
    • /
    • 제13권3호
    • /
    • pp.58-67
    • /
    • 1991
  • A theory of continuum damage mechanics based on the theory of materials of type N was developed and its nonlinear finite element approximation and numerical simulation was carried out. To solve the finite elastoplasticity problems, reasonable kinematics of large deformed solids was introduced and constitutive relations based on the theory of materials of type-N were derived. These highly nonlinear equations were reduced to the incremental weak formulation and approximated by the theory of nonlinear finite element method. Two types of problems, compression moulding problem and pure bending problem, were solved for aluminum 2024.

  • PDF

대전력 펄스용 횡자계형 및 종자계형 진공스위치의 에너지 손실 특성 비교 (A Comparison of Energy Loss Characteristics between Radial and Axial Magnetic Field Type Vacuum Switches)

  • 이태호;허창수;이홍식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권3호
    • /
    • pp.130-136
    • /
    • 2003
  • Crowbar system Vacuum switches, widely used In a pulsed power system, could use the magnetic force to prevent the electrode damage. Vacuum switches using the magnetic forces are classified roughly into RMF(Radial Magnetic Field) and AMF(Axial Magnetic Field) type. The RMF type switches restrain a main electrode from aging due to high temperature and high density arc by rotating the arc which is driven by the Lorenz force. The AMF type switches generate axial magnetic field which decreases the electrode damage by diffusing arc. In this paper, we present the energy loss characteristics of both RMF and AMF type switches which are made of CuCr(75:25 wt%) electrodes. The time-dependent dynamic arc resistance of high-current pulsed discharge in a high vacuum chamber(~10$^{-6}$ Torr). which occurs in RMF and AMF type switches, was obtained by solving the circuit equation using the measured values of the arc voltage and current. In addition, we compared energy loss characteristics of both switches. Based on our results, it was found that the arc voltage and the energy loss of an AMF type switch are lower than a RMF type switch.