• Title/Summary/Keyword: TSMC

Search Result 188, Processing Time 0.031 seconds

Design of a 3D Graphics Geometry Accelerator using the Programmable Vertex Shader (Programmable Vertex Shader를 내장한 3차원 그래픽 지오메트리 가속기 설계)

  • Ha Jin-Seok;Jeong Hyung-Gi;Kim Sang-Yeon;Lee Kwang-Yeob
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.53-58
    • /
    • 2006
  • A Vertex Shader is designed to show more 3D graphics expressions, and to increase flexibility of the fixed function T&L (Transform and Lighting) engine. Design of this Shader is based on Vertex Shader 1.1 of DirectX 8.1 and OpenGL ARB. The Vertex Shader consists of four floating point ALUs for vectors operation. The previous 32bits floating point data type is replaced to 24bits floating point data type in order to design the Vertex Shader that consume low-power and occupy small area. A Xilinx Virtex2 300M gate module is used to verify behaviour of the core. The result of Synopsys synthesis shows that the proposed Vertex Shader performs 115MHz speed at the TSMC 0.13um process and it can operate as the rate of 12.5M Polygons/sec. It shows the complexity of 110,000 gates in the same process.

Design of Clock Recovery circuit for 13.56MHz RFID Tags with 100% ASK Receiver (100% ASK 수신기를 위한 13.56MHz RFID Tag용 클럭 복원회로 설계)

  • Kim, Ji-Gon;Yi, Kyeong-Il;Kim, Hyun-Sik;Kim, J.H.;Kim, Hyo-Jong;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.44-49
    • /
    • 2008
  • We have proposed a clock recovery circuit for 13.56MHz RFID Tags using 100%, ASK RF input signal. The proposed clock recovery circuit generates clock pulses without reference clock by adapting register controlled DLL. The proposed circuit have designed by using a TSMC 0.18um 1P6M CMOS technology. The simulated results show that the phase locking time of the proposed circuit is about 6.4 usec and power consumption is about 43uW at supply voltage of 3.3V.

Design of a Multiband CMOS VCO using Switched Bondwire Inductor (스위치드 본드와이어 인덕터를 이용한 다중대역 CMOS 전압제어발진기 설계)

  • Ryu, Seonghan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.231-237
    • /
    • 2016
  • This paper presents a multiband low phase noise CMOS VCO with wide frequency tunability using switched bondwire inductor bank. The combination of bondwire inductor and CMOS switch transistor enhances frequency tunability and improves phase noise characteristics. The proposed multiband VCO operates from 2.3GHz to 6.3GHz with phase noise of -136dBc/Hz and -122dBc/Hz at 1 MHz offset frequency, respectively. Switched bondwire inductor bank shows high quality factor(Q) at each frequency band, which allows better tradeoff between phase noise and power consumption. The proposed VCO is designed in TSMC 0.18um CMOS process and consumes 7.2 mW power resulting in figure of merit(FOM) of -189.3dBc/Hz at 1 MHz offset from 6GHz carrier frequency.

Design and Fabrication of 0.25 μm CMOS TIA Using Active Inductor Shunt Peaking (능동형 인덕터 Shuut Peaking을 이용한 0.25 μm CMOS TIA 설계 및 제작)

  • Cho In-Ho;Lim Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.957-963
    • /
    • 2005
  • This paper presents technique of wideband TIA for optical communication systems using TSMC 0.25 ${\mu}m$ CMOS RF-Mixed mode. In order to improve bandwidth characteristics of an TIA, we use active inductor shunt peaking to cascode and common-source configuration. The result shows the 37 mW and 45 mW power dissipation with 2.5 V bias and 61 dB$\Omega$ and 61.4 dB$\Omega$ transimpedance gain. And the -3 dB bandwidth of the TIA is enhanced from 0.8 GHz to 1.45 GHz in cascode and 0.61 GHz to 0.9 GHz in common-source. And the input noise current density is $5 pA/\sqrt{Hz}$ and $4.5 pA/\sqrt{Hz}$, and -10 dB out put return loss is obtained in 1.45 GHz. The total size of the chip is $1150{\times}940{\mu}m^2$.

The implementation of the color component 2-D DWT Processor for the JPEG 2000 hard-wired encoder (JPEG 2000 Hard-wired Encoder를 위한 칼라 2-D DWT Processor의 구현)

  • Lee, Sung-Mok;Cho, Sung-Dae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.321-328
    • /
    • 2008
  • In this paper, we propose the hardware architecture of two-dimensional discrete wavelet transform (2D DWT) and quantization for using JPEG2000. Color 2-D DWT processor is proposed that is to apply to JPEG 2000 Hard-wired Encoder. JPEG 2000 DWT processor uses the Daubechies' (9,7) bi-orthogonal filter, and we design by minimizing error of the DWT transformer by ${\pm}1$ LSB during compression and decompression. We designed the DWT filters that using by using shift and adder structure instead of multiplier structure which raise the hardware complexity. It is improve the operation speed of filters and reduce the hardware complexity. The proposed system is designed by the hardware description language Verilog-HDL and verified by Synopsys Design Analyzer using TSMC 0.25${\mu}m$ ASIC library.

  • PDF

A Low Cost Instruction Set for Bit Stream Process (비트열 처리를 위한 저비용 명령어 세트)

  • Ham, Dong-Hyeon;Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • Most of media compression CODECs adopts the variable length coding method. This paper proposes special registers and instruction set for bit stream process in order to accelerate the decoding process of the variable length code. The instruction set shares the conventional data path to minimize additional costs. And bit stream is read from the memory instead of the special port. Therefore the instruction set minimizes the change of the processor, and is adopted without any additional input controller and buffer, and accelerate decoding process of variable length code. The data path of the instruction set needs additional 65 bits memory and 344 equivalent gates, 0.19 ns delay under TSMC $0.25{\mu}m$ technology. The instruction set reduced the execution time of the variable length code decoding process in H.264/AVC by about 55%.

An ASIP Design for Deblocking Filter of H.264/AVC (H.264/AVC 표준의 디블록킹 필터를 가속하기 위한 ASIP 설계)

  • Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.142-148
    • /
    • 2008
  • Though a deblocking filter of H.264/AVC provides enhanced image quality by removing blocking artifact on block boundary, the complex filtering operation on this process is a dominant factor of the whole decoding time. In this paper, we designed an ASIP to accelerate deblocking filter operation with the proposed instruction set. We designed a processor based on a MIPS structure with LISA, simulated a deblocking later model, and compared the execution time on the proposed instruction set. In addition, we generated HDL model of the processor through CoWare's Processor Designer and synthesized with TSMC 0.25um CMOS cell library by Synopsys Design Compiler. As the result of the synthesis, the area and delay time increased 7.5% and 3.2%, respectively. However, due to the proposed instruction set, total execution performance is improved by 18.18% on average.

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.

Design of Low Power CMOS LNA for using Current Reuse Technique (전류 재사용 기법을 이용한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1465-1470
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications that is a promising international standard for short area wireless communications. The proposed circuit has been designed using TSMC $0.18{\mu}m$ CMOS process technology and two stage cascade topology by current reuse technique. Two stage cascade amplifiers use the same bias current in the current reused stage which leads to the reduction of the power dissipation. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results show that the LNA has a extremely low power dissipation of 1.38mW with a supply voltage of 1.0V. This is the lowest value among LNAs ever reported. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and minimum noise figure of 1.13dB.

Area Efficient Hardware Design for Performance Improvement of SAO (SAO의 성능개선을 위한 저면적 하드웨어 설계)

  • Choi, Jisoo;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.391-396
    • /
    • 2013
  • In this paper, for HEVC decoding, an SAO hardware design with less processing time and reduced area is proposed. The proposed SAO hardware architecture introduces the design processing $8{\times}8$ CU to reduce the hardware area and uses internal registers to support $64{\times}64$ CU processing. Instead of previous top-down block partitioning, it uses bottom-up block partitioning to minimize the amount of calculation and processing time. As a result of synthesizing the proposed architecture with TSMC $0.18{\mu}m$ library, the gate area is 30.7k and the maximum frequency is 250MHz. The proposed SAO hardware architecture can process the decode of a macroblock in 64 cycles.