• Title/Summary/Keyword: TSK fuzzy system

Search Result 73, Processing Time 0.025 seconds

Design of TSK Fuzzy Nonlinear Control System for Ship Steering (선박조타의 TSK 퍼지 비선형제어시스템 설계)

  • Chae, Yang-Bum;Lee, Won-Chan;Kang, Geun-Taek
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • This paper suggests a method to design TSK(Takagi-Sugeno-Kang) fuzzy nonlinear control system for automatic steering system which contains the nonlinear component of ship's maneuvering equation. A TSk fuzzy model can be identified using input-output data and represent a nonlinear system very well. A TSK fuzzy controller can be designed systematically from a TSK fuzzy model because the consequent part of TSK fuzzy rule is a linear input-output equation having a constant term. Therefore, this paper suggests the method identifying the TSK fuzzy model and designing the TSK fuzzy controller based on the TSK fuzzy model for ship steering.

Backing up Control of a Truck-Trailer using TSK Fuzzy System (TSK 퍼지시스템을 이용한 트럭-트레일러의 후진 제어)

  • 김종화;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.133-136
    • /
    • 2003
  • This paper presents a fuzzy control scheme for backing up control of Truck-Trailer, which is nonlinear and unstable by using TSK(Takagi-Sugeno-kang) fuzzy system. The nonlinear system of Truck-Trailer was expressed by using TSK fuzzy model, and the TSK fuzzy controller was designed from TSK fuzzy model. The usefulness of the proposed algorithm for backing up truck-trailer is certificated by the computer simulations.

  • PDF

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its application (TSK퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • 채양범;오갑석;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.225-231
    • /
    • 1998
  • TSK fuzzy system can represent effectively the behavior of a complex nonlinear system with low number of rules with the desired accuracy and guarantee the stability of the closed loop system, while the interpretation of the rules is difficult due to the functional nature of the consequents. On the contrary, fuzzy controller with singleton consequents is understandable intuitively and adjustable the rules easily due to qualitative expression of the rules. Ideally, one would like to combine the positive identification properties of TSK fuzzy system with the advantages of fuzzy controller with singleton consequents. Therefore, this paper suggests a method transforming TSK fuzzy systems into fuzzy systems with singleton consequents, and shows its application designing a fuzzy controller with singleton consequents by using the TSK fuzzy system when the behavior of a nonlinear system is described with a singleton fuzzy model by human esper.

  • PDF

Design of TSK Fuzzy Controller Based on TSK Fuzzy Model (TSK퍼지모델로부터 TSK퍼지제어기의 설계)

  • Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.53-67
    • /
    • 1998
  • This paper suggests a method designing the TSK fuzzy controller based on the TSK fuzzy model, which guarantees the stability of the closed loop system and makes the response of the closed loop system to be a desired one. This paper deals with the general type of TSK fuzzy model of which consequents are affine equations having a constant term. The TSK fuzzy controller suggested in this paper is designed by using the pole placement which developed for the linear systems and makes the closed loop system have the same behavior as a desired linear system. A reference input can be introduced to the suggested TSK fuzzy controller and an integral action also can be introduced. Simulation results reveal that the suggested methods are practically feasible. This paper deals with both the continuous systems and the discrete systems.

  • PDF

Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System (Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.447-454
    • /
    • 2010
  • This paper presents multiple fuzzy prediction systems based on an Interval type-2 TSK fuzzy Logic System so that the uncertainty and the hidden characteristics of nonlinear data can be reflected more effectively to improve prediction quality. In proposed method, multiple fuzzy systems are adopted to handle the nonlinear characteristics of data, and each of multiple system is constructed by using interval type-2 TSK fuzzy logic because it can deal with the uncertainty and the characteristics of data better than type-1 TSK fuzzy logic and other methods. For input of each system, the first-order difference transformation method are used because the difference data generated from it can provide more stable statistical information to each system than the original data. Finally, computer simulations are performed to show the effectiveness of the proposed method for two typical time series examples.

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its applications (TSK 퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • Chae, Yang-Beom;Lee, Won-Chang;Gang, Geun-Taek
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.48-59
    • /
    • 2002
  • TSK(Takagi-Sugeno-Kang) fuzzy models with linear equations consequents, which represent complex nonlinear systems very well with a few rules, can be easily identified systematically by using input-output data. Many algorithms designing TSK fuzzy controllers based on TSK fuzzy models, which guarantees the stability of the closed system, have been suggested. On the contrary, singleton fuzzy models with singleton consequents can be easily understood and adjusted. In this paper, in order to utilize the merits of TSK fuzzy systems and singleton fuzzy systems, an algorithm transforming a TSK fuzzy model into a singleton fuzzy model having the same input-output relation is suggested. The suggested algorithm is applied to a fuzzy modelling example and a fuzzy controller design example.

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

Design of HCBKA-Based IT2TSK Fuzzy Prediction System (HCBKA 기반 IT2TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1396-1403
    • /
    • 2011
  • It is not easy to analyze the strong nonlinear time series and effectively design a good prediction system especially due to the difficulties in handling the potential uncertainty included in data and prediction method. To solve this problem, a new design method for fuzzy prediction system is suggested in this paper. The proposed method contains the followings as major parts ; the first-order difference detection to extract the stable information from the nonlinear characteristics of time series, the fuzzy rule generation based on the hierarchically classifying clustering technique to reduce incorrectness of the system parameter identification, and the IT2TSK fuzzy logic system to reasonably handle the potential uncertainty of the series. In addition, the design of the multiple predictors is considered to reflect sufficiently the diverse characteristics concealed in the series. Finally, computer simulations are performed to verify the performance and the effectiveness of the proposed prediction system.