• Title/Summary/Keyword: TSK fuzzy

Search Result 97, Processing Time 0.026 seconds

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

On the Derivation of TSK Fuzzy Model for Nonlinear Differentical Equations (비선형 미분방정식의 TSK 퍼지 모델 유도에 관하여)

  • 이상민;조중선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.720-725
    • /
    • 2001
  • Derivation of TSK fuzzy model from nonlinear differential equation is fundamental issue in the field of theoretical fuzzy control. The method which does not yield affine local differential equations at off-equilibrium points is proposed in this paper. A prototype TSK fuzzy model which has triangular membership functions for linguistic terms of the antecedent part is derived systematically. And then GA is used to modify the membership functions optimally. Simulation results show the validity of the proposed method.

  • PDF

Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System (Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.447-454
    • /
    • 2010
  • This paper presents multiple fuzzy prediction systems based on an Interval type-2 TSK fuzzy Logic System so that the uncertainty and the hidden characteristics of nonlinear data can be reflected more effectively to improve prediction quality. In proposed method, multiple fuzzy systems are adopted to handle the nonlinear characteristics of data, and each of multiple system is constructed by using interval type-2 TSK fuzzy logic because it can deal with the uncertainty and the characteristics of data better than type-1 TSK fuzzy logic and other methods. For input of each system, the first-order difference transformation method are used because the difference data generated from it can provide more stable statistical information to each system than the original data. Finally, computer simulations are performed to show the effectiveness of the proposed method for two typical time series examples.

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Fuzzy Modelling and Fuzzy Controller Design with Step Input Responses and GA for Nonlinear Systems (비선형 시스템의 계단 입력 응답과 GA를 이용한 퍼지 모델링과 퍼지 제어기 설계)

  • Lee, Wonchang;Kang, Geuntaek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • For nonlinear control system design, there are many studies based on TSK fuzzy model. However, TSK fuzzy modelling needs nonlinear dynamic equations of the object system or a data set fully distributed in input-output space. This paper proposes an modelling technique using only step input response data. The technique uses also the genetic algorithm. The object systems in this paper are nonlinear to control input variable or output variable. In the case of nonlinear to control input, response data obtained with several step input values are used. In the case of nonlinear to output, step input response data and zero input response data are used. This paper also presents a fuzzy controller design technique from TSK fuzzy model. The effectiveness of the proposed techniques is verified with numerical examples.

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

Design and Analysis of Type-2 TSK Fuzzy Logic Systems (Type-2 TSK 퍼지 논리 시스템의 설계 및 분석)

  • Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.153-154
    • /
    • 2008
  • 본 논문의 Type-2 TSK 퍼지 논리 시스템(Fuzzy Logic System; FLS)은 전반부 멤버쉽 함수로 가우시안 형태의 Type-2 퍼지 집합을 이용하고 후반부는 계수가 상수인 1차 선형식을 사용한다. 또한 Type-1 TSK 퍼지 논리 시스템을 Type-2 TSK 퍼지 논리 시스템으로 확장하고 제안된 모델을 가스로 공정 데이터와 sugeno 데이터에 적용한다. 여기서 인위적인 노이즈를 갖는 입력 데이터를 사용하여 제안된 모델의 성능이 기존의 모델보다 우수함을 수치적인 예로 보인다.

  • PDF

Design and Analysis of Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 Interval Type-2 TSK Fuzzy Logic System의 설계 및 해석)

  • Kim, Dae-Bok;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문에서는 Interval Type-2 TSK 퍼지 논리 시스템을 설계하고 기존의 Type-1 TSK 퍼지 논리 시스템과 비교 분석한다. Type-1 TSK 퍼지 논리 시스템과 Interval Type-2 TSK 퍼지 논리 시스템을 비교하기 위해 노이즈에 영향을 받은 목적 데이터를 사용한다. 유전자 알고리즘을 사용하여 전반부의 중심값의 학습률과 후반부 계수값의 학습률을 결정한다.

  • PDF

TSK Fuzzy Model Based Hybrid Adaptive Control of Nonlinear Systems (비선형 시스템의 TSK 퍼지모델 기반 하이브리드 적응제어)

  • Kim, You-Keun;Kim, Jae-Hun;Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.211-216
    • /
    • 2004
  • In this thesis, we present the Takagi-Sugeno-Kang (TSK) fuzzy model based adaptive controller and adaptive identification for a general class of uncertain nonlinear dynamic systems. We use an estimated model for the unknown plant model and use this model for designing the controller. The hybrid adaptive control combined direct and indirect adaptive control based on TSK fuzzy model is constructed. The direct adaptive law can be showed by ignoring the identification errors and fails to achieve parameter convergence. Thus, we propose an TSK fuzzy model based hybrid adaptive (HA) law combined of the tracking error and the model ins error to adjust the parameters. Using a Lyapunov synthesis approach, the proposed hybrid adaptive control is proved. The hybrid adaptive law (HA) is better than the direct adaptive (DA) method without identifying the model ins error in terms of faster and improved tracking and parameter convergence. In order to show the applicability of the proposed method, it is applied to the inverted pendulum system and the performance is verified by some simulation results.

  • PDF