Sung Bin Park;Jae Kyun Kim;Sung Hoon Choi;Han Na Noh;Eun Kyung Ji;Kyoung Sik Cho
Korean Journal of Radiology
/
제1권2호
/
pp.110-113
/
2000
Objective: The purpose of this study was to determine, when measuring prostate volume by TRUS, whether height is more accurately determined by transaxial or midsagittal scanning. Materials and Methods: Sixteen patients who between March 1995 and March 1998 underwent both preoperative TRUS and radical prostatectomy for prostate cancer were included in this study. Using prolate ellipse volume calculation (height × length × width × 𝜋/6), TRUS prostate volume was determined, and was compared with the measured volume of the specimen. Results: Prostate volume measured by TRUS, regardless of whether height was determined transaxially or midsagittally, correlated closely with real specimen volume. When height was measured in one of these planes, a paired t test revealed no significant difference between TRUS prostate volume and real specimen volume (p = .411 and p = .740, respectively), nor were there significant differences between the findings of transaxial and midsagittal scanning (p = .570). A paired sample test, however, indicated that TRUS prostate volumes determined transaxially showed a higher correlation coefficient (0.833) and a lower standard deviation (9.04) than those determined midsagittally (0.714 and 11.48, respectively). Conclusion: Prostate volume measured by TRUS closely correlates with real prostate volume. Furthermore, we suggest that when measuring prostate volume in this way, height is more accurately determined by transaxial than by midsagittal scanning.
TRUS영상에서 전립선에 대한 많은 진단과 치료 과정에서 정확한 전립선 경계의 추출이 요구된다. 여기에는 전립선 경계의 애매함, 반점, 낮은 그레이 레벨로 인하여 많은 어려움이 존재한다. 본 논문에서는 서포트 벡터와 뱀형상 윤곽선을 이용하여 TRUS영상의 자동 전립선 분할에 대한 방법을 제안한다. 이 방법은 전처리, 가버 특성 추출, 학습, 전립선 추출 단계로 구성된다. 텍스처 특성을 추출하기 위하여 가버 필터 뱅크가 사용되며, 학습 과정에서 전립선과 비전립선의 각 특성을 얻기 위하여, SVM이 사용된다. 전립선의 경계는 뱀형상 윤곽 알고리즘에 의해 추출된다. 실험 결과, 제안된 알고리즘은 인간 전문가가 추출한 경계와 비교했을 때 9.3%보다 적은 차이로 전립선 경계를 추출할 수 있었다.
전립선은 남자에게만 있는 장기이다. 전립선의 질병을 진단하기 위하여 일반적으로 TRUS 영상이 사용되는데, 희미한 전립선 경계나 잡음, 좁은 그레이 레벨 분포 때문에, 전립선의 경계를 검출하는 것은 상당히 어려운 작업 중의 하나이다. 본 논문에서는 SVM을 사용하여 TRUS 영상에서 자동적으로 전립선 분할을 하는 방법을 제안한다. 이 방법은 전처리, 가버 특징 추출, 훈련, 전립선 분할 과정으로 진행된다. 전처리 과정에서 잡음 제거는 스틱 필터와 top-hat 변환이 적용된다. 회전 불변 텍스처 추출을 위하여 가버 필터 뱅크가 사용된다. 훈련과정에서 SVM은 전립선과 비전립선의 각 특징을 얻기 위해 사용되며, 마지막으로 전립선 경계가 추출된다. 여러 실험 결과로 제안 방법은 충분히 유효하고, 의사의 수동 추출 방법과 비교했을 때 10%미만의 경계 차이를 보였다.
Background: This study was performed to reconsider the efficacy of transrectal ultrasonography (TRUS) in diagnosing prostate cancer by analyzing the results of a digital rectal examination (DRE), serum prostate-specific antigen (PSA) and a transrectal ultrasonography in patients with prostate specific antigen levels of 10 ng/ml or less. Materials and Methods: One-hundred and eighty one men with PSA levels of 10 ng/ml or less, who had a TRUS-guided tissue biopsy performed, were included in this study. The detection rate of prostate cancer was compared according to the TRUS result and the presence or absence of nodularity and the consistency of the prostate on DRE. Results: In a total 181 patients, there were 73 patients with PSA levels of 4 ng/ml or less and 4 of them had prostate cancer. Thre were 108 patients with PSA levels of 4-10 ng/ml and 18 of them were prostate cancer. TRUS was performed in 152 patients and 16 out of 58 patients diagnosed with prostate cancer, 3 out of 39 diagnosed with suspicious prostate cancer, and 2 out of 55 patients diagnosed as having no prostate cancer were found to have prostate cancer. In 40 patients, a nodule was palpated on DRE and 8 of them were found to have prostate cancer. Five out of 19 patients with a stony hard consistency, 3 of 12 with a firm to hard consisency, 12 of 129 with a firm consistency, 0 of 13 with a soft to firm consistency, and 2 of 8 with a soft consistency were prostate cancer. In the prostate cancer patients, there were 4 patients with PSA levels of 4 ng/ml or less and all these patients were diagnosed with prostate cancer or suspicious prostate cancer on TRUS but the nodule was not palpated in all patients. Two were soft and 2 were firm consistency on DRE. Conclusion: In patients with serum PSA levels of 10 ng/ml or less, TRUS is a more useful supporting method than DRE and a more active application of TRUS may lead to an early diagnosis and pertinent treatment of prostate cancer.
Hak Jong Lee;Ghee Young Choe;Chang Gyu Seong;Seung Hyup Kim
Korean Journal of Radiology
/
제2권3호
/
pp.159-163
/
2001
Objective: The purpose of this study is to correlate the findings of peripheral hypoechoic rim, seen at transrectal ultrasonography (TRUS) in chronic prostatitis patients, with the histopthologic findings. Materials and Methods: Seven patients with pathologically proven chronic prostatitis were involved in this study. The conspicuity of the peripheral hypoechoic prostatic rim, seen at TRUS, was prominent and subtle, and to determine its histopathologic nature, the microscopic findings were reviewed. Results: In five of seven cases (71%), TRUS demonstrated a prominent peripheral hypoechoic rim. Microscopic examination revealed that inflammatory cell infiltration of prostatic glandular tissue was severe in three cases (42.9%), moderate in two (28.6%), and minimal in two (28.6%). In all seven cases, the common histopathologic findings of peripheral hypoechoic rim on TRUS were loose stromal tissues, few prostatic glands, and sparse infiltration by inflammatory cells. Conclusion: The peripheral hypoechoic rim accompanying prostatic inflammation and revealed by TRUS reflects a sparsity of prostate glandular tissue and is thought to be an area in which inflammatory cell infiltration is minimal.
전립선암은 전립선에 나타나는 악성 종양이다. 현재 그 발병률이 높아지고 있다. 전립선암의 구조를 가장 정확하게 확인할 수 있는 검사 방법은 MRI를 이용하는 것이나, 그 비용 때문에 모든 환자에게 적용하기는 어려운 실정이다. 그래서 많은 환자들은 가격이 저렴한 초음파검사를 이용하여 전립선암을 진단하고 있다. 전통적으로 의사들은 영상을 눈으로 확인하여 전립선의 경계를 수동으로 분할하였다. 그러나 수동으로 분할하는 과정은 시간이 많이 소요되며, 의사에 따라서 그 경계가 일정하지 않게 얻어진다. 이 문제를 해결하기 위하여 전립선의 자동 분할에 관한 연구가 되었고, 환자들에게 신뢰를 줄 수 있었다. 본 연구는 초음파 전립선 영상에서 전립선의 경계를 분할하는데 평균 형상 모델을 적용하는 것이다. 먼저, 에지 분포를 이용하여 프로브를 찾고, 프로브와 연결된 두 직선을 찾는다. 이 후에 이 정보를 이용하여 전립선 영상 위에 평균 형상을 위치시킨다.
Kash, Deep Par;Lal, Murli;Hashmi, Altaf Hussain;Mubarak, Muhammed
Asian Pacific Journal of Cancer Prevention
/
제15권7호
/
pp.3087-3091
/
2014
Purpose: To determine the utility of digital rectal examination (DRE), serum total prostate specific antigen (tPSA) estimation, and transrectal ultrasound (TRUS) for the detection of prostate cancer (PCa) in men with lower urinary tract symptoms (LUTS). Materials and Methods: All patients with abnormal DRE, TRUS, or serum tPSA >4ng/ml, in any combination, underwent TRUS-guided needle biopsy. Eight cores of prostatic tissue were obtained from different areas of the peripheral prostate and examined histopathologically for the nature of the pathology. Results: PCa was detected in 151 (50.3%) patients, remaining 149 (49.7%) showed benign changes with or without active prostatitis. PCa was detected in 13 (56.5%), 9 (19.1%), 26 (28.3%), and 103 (74.6%) of patients with tPSA <4 ng/ml, 4-10 ng/ml, 10-20 ng/ml and >20 ng/ml respectively. Only 13 patients with PCa had abnormal DRE and TRUS with serum PSA <4 ng/ml. The detection rate was highest in patients with tPSA >20 ng/ml. The association between tPSA level and cancer detection was statistically significant (p<0.01). Among 209 patients with abnormal DRE and raised serum PSA, PCa was detected in 128 (61.2%). Conclusions: The incidence of PCa increases with increasing serum level of tPSA. The overall screening and detection rate can be further improved by using DRE, TRUS and TRUS-guided prostate needle biopsies.
전립선암은 남자에게 가장 흔히 나타나는 암 중의 하나이며, 많은 나라에서 죽음에 이르게 하는 큰 요인이 되고 있다. 전립선암을 진단하고 치료하는 과정에서 비용이 싼 TRUS 영상이 사용된다. 그러나 전립선 경계의 정확한 구분이 요구되지만 어려운 문제이다. 그 이유는 경계가 불명확하고, 반점들이 많으며, 그레이 레벨의 범위가 작기 때문이다. 본 연구에서는 전립선의 평균 형상 모델과 불변의 특징을 이용하여 TRUS 영상에서 자동으로 전립선 분할하는 방법을 제안한다. 이 방법은 4 단계로 구성된다. 먼저, 에지 분포를 이용하여 프로브와 두개의 직선을 찾아낸다. 다음으로, 평균 형상 모델의 중앙에 위치한 3개의 전립선 패치를 획득한다. 이 패치는 전립선과 비전립선의 특징을 비교하기 위해 사용된다. 다음으로, 세 개의 패치와 각 블록들이 얼마나 대표 블록과 유사한지를 비교한다. 마지막으로, 앞 단계의 경계와 첫 단계에서 얻은 개략적 경계가 최종 분할에 사용된다. 이 방법의 유효성을 검증하기 위하여 실험을 하였으며, 인간 전문가에 의해 얻어진 경계와 비교하여 7.78% 미만의 차이로 경계를 얻을 수 있었다.
This paper presents a two-step, semi-automated method for reconstructing a three-dimensional (3D) shape of the prostate from a 3D transrectal ultrasound (TRUS) image. While the method has been developed for prostate ultrasound imaging, it can potentially be applicable to any other organ of the body and other imaging modalities. The proposed method takes as input a 3D TRUS image and generates a watertight 3D surface model of the prostate. In the first step, the system lets the user visualize and navigate through the input volumetric image by displaying cross sectional views oriented in arbitrary directions. The user then draws partial/full contours on selected cross sectional views. In the second step, the method automatically generates a watertight 3D surface of the prostate by fitting a deformable spherical template to the set of user-specified contours. Since the method allows the user to select the best cross-sectional directions and draw only clearly recognizable partial or full contours, the user can avoid time-consuming and inaccurate guesswork on where prostate contours are located. By avoiding the usage of noisy, incomprehensible portions of the TRUS image, the proposed method yields more accurate prostate shapes than conventional methods that demand complete cross-sectional contours selected manually, or automatically using an image processing tool. Our experiments confirmed that a 3D watertight surface of the prostate can be generated within five minutes even from a volumetric image with a high level of speckles and shadow noises.
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.