• Title/Summary/Keyword: TROSY

Search Result 8, Processing Time 0.018 seconds

Sensitivity Enhancement of Methyl-TROSY by Longitudinal 1H Relaxation Optimization

  • Lee, Dong-Han;Vijayan, Vinesh;Montaville, Pierre;Becker, Stefan;Griesinger, Christian
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • The NMR detection of methyl groups is of keen interest because they provide the long-range distance information required to establish global folds of high molecular weight proteins. Using longitudinal $^1H$ relaxation optimization, we achieve a gain in sensitivity of approximately 1.6-fold in the methyl-TROSY and its NOESY experiments for the 38 kDa protein mitogen activated protein kinase p38 in its fully protonated and $^{13}C$ and $^{15}N$ labeled state.

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong;Choi, Dongwook;Park, Chankyu;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2015
  • Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

NMR Study of larger proteins using isotope labeling

  • Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2014
  • Larger proteins (above molecular weight 50 kDa) usually show slow motional tumbling in solution, which facilitates the decay of NMR signal, resulting in poor signal-to-noise. In the past twenty years, researchers have tried to overcome this problem with higher molecular weight by improvement of hardware (higher magnetic field and cryoprobe), optimization of pulse sequences for lager molecules, and development of isotope-labeling techniques. Actually, GroEL/ES complex (${\approx}$ 900 kDa) was successfully studied using combination of above techniques. Among the techniques used in large molecular studies, the impact of isotope-labeling for large molecules study is summarized and discussed here.

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33

  • Lee, Yoo-Sup;Ko, Hyun-Suk;Ryu, Kyoung-Seok;Jeon, Young-Ho;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Lee, Yoo-Sup;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.172-184
    • /
    • 2012
  • The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

Oxidation-Induced Conformational Change of a Prokaryotic Molecular Chaperone, Hsp33, Monitored by Selective Isotope Labeling

  • Lee, Yoo-Sup;Ryu, Kyoung-Seok;Lee, Yuno;Kim, Song-Mi;Lee, Keun-Woo;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.137-145
    • /
    • 2011
  • Hsp33, a prokaryotic molecular chaperone, exerts holdase activity in response to oxidative stress. In this study, the stepwise conformational change of Hsp33 upon oxidation was monitored by NMR. In order to overcome its high molecular weight (33 kDa as a monomer and 66 kDa as a dimer), spectra were simplified using a selectively [$^{15}N$]His-labeled protein. All of the eight histidines were observed in the TROSY spectrum of the reduced Hsp33. Among them, three peaks showed dramatic resonance shifts dependent on the stepwise oxidation, indicating a remarkable conformational change. The results suggest that unfolding of the linker domain is associated with dimerization, but not entire region of the linker domain is unfolded.

Structural Study of the Cytosolic C-terminus of Vanilloid Receptor 1

  • Seo, Min-Duk;Won, Hyung-Sik;Oh, Uh-Taek;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 2007
  • Vanilloid receptor I [transient receptor potential vanilloid subfamily member 1 (TRPV1), also known as VR1] is a non-selective cationic channel activated by noxious heat, vanilloids, and acid, thereby causing pain. VR1 possesses six transmembrane domain and N-and C-terminus cytosolic domains, and appears to be a homotetramer. We studied the structural properties of Cterminus of VR1 (VR1C) using CD and NMR spectroscopy. DPC micelles, with a zwitterionic surface, and SDS micelles, with a negatively charged surface, were used as a membrane mimetic model system. Both SDS and DPC micelles could increase the stability of helical structures and/or reduce the aggregation form of the VR1C. However, the structural changing mode of the VR1C induced by the SDS and DPC micelles was different. The changes according to the various pHs were also different in two micelles conditions. Because the net charges of the SDS and DPC micelles are negative and neutral, respectively, we anticipate that this difference might affect the structure of the VR1C by electrostatic interaction between the surface of the VR1C and phospholipids of the detergent micelles. Based on these similarity and dissimilarity of changing aspects of the VR1C, it is supposed that the VR1C probably has the real pI value near the pH 7. Generally, mild extracellular acidic pH ($6.5{\sim}6.8$) potentiates VRI channel activation by noxious heat and vanilloids, whereas acidic conditions directly activate the channel. The channel activation of the VRI might be related to the structural change of VR1C caused by pH (electrostatic interactions), especially near the pH 7. By measuring the $^1-^{15}N$ TROSY spectra of the VR1C, we could get more resolved and dispersed spectra at the low pH and/or detergent micelles conditions. We will try to do further NMR experiments in low pH with micelles conditions in order to get more information about the structure of VR1C.

  • PDF