Browse > Article
http://dx.doi.org/10.6564/JKMRS.2012.16.2.172

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli  

Lee, Yoo-Sup (Department of Biotechnology, Konkuk University)
Won, Hyung-Sik (Department of Biotechnology, Konkuk University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.16, no.2, 2012 , pp. 172-184 More about this Journal
Abstract
The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.
Keywords
Hsp33; oxidative stress; triple resonance; backbone NMR assignments;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 L. Tutar, Y. Tutar, Curr. Pharm. Biotechnol. 11, 216 (2010).   DOI
2 U. Jakob, W. Muse, M. Eser, J.C.A. Bardwell, Cell 96, 341 (1999).   DOI   ScienceOn
3 J. Winter, M. Ilbert, P.C. Graf, D. Ozcelik, U. Jakob, Cell 135, 691 (2008).   DOI
4 M. Ilbert, J. Horst, S. Ahrens, J. Winter, P.C.F. Graf, H. Lilie, U. Jakob, Nat. Struct. Mol. Biol. 14, 556 (2007).   DOI
5 H.-S. Won, L.Y. Low, R.D. Guzman, M. Martinez-Yamout, U. Jakob, H.J. Dyson, J. Mol. Biol. 341, 893 (2004).   DOI
6 C.M. Cremers, D. Reichmann, J. Hausmann, M. Ilbert, U. Jakob, J. Biol. Chem. 285, 11243 (2010).   DOI
7 I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki, D.R. Cooper, P.C.F. Graf, A. Joachimiak, U. Jakob, Z.S. Derewenda, Structure 12, 1901 (2004).   DOI
8 J. Vijayalakshmi, M.K. Mukhergee, J. Graumann, U. Jakob, M.A. Saper, Structure 9, 367 (2001).   DOI
9 S.-J. Kim, D.-G. Jeong, S.-W. Chi, J.-S. Lee, S.-E. Ryu, Nat. Struct. Biol. 8, 459 (2001).   DOI   ScienceOn
10 L. Jaroszewski, R. Schwarzenbacher, D. McMullan, P. Abdubek, S. Agarwalla, E. Ambing, H. Axelrod, T. Biorac, J.M. Canaves, H.-J. Chiu, et al., Proteins 61, 669 (2005).   DOI
11 S-W. Chi, D.G. Jeong, J.R. Woo, H.S. Lee, B.C. Park, B.Y. Kim, R.L. Erikson, S.E. Ryu, S.J. Kim, FEBS Lett. 585, 664 (2011).   DOI
12 D. Reichmann, Y. Xu, C.M. Cremers, M. Ilbert, R. Mittelman, M.C. Fitzgerald, U. Jakob, Cell 148, 947 (2012).   DOI
13 Y.-S. Lee, H.-S. Ko, K.-S. Ryu, Y.-H. Jeon, H.-S. Won, J. Kor. Magn. Reson. Soc. 14, 117 (2010).   DOI
14 M.P. Mayer, Cell 148, 843 (2012).   DOI
15 Y.-S. Lee. K.-S. Ryu, S.-J. Kim, H.-S. Ko, D.-W. Sim, Y.-H. Jeon, E.-H. Kim, H.-S. Won, FEBS Lett. 586, 411 (2012).   DOI
16 Y.-S. Lee, K.-S. Ryu, Y. Lee, S. Kim, K.W. Lee, H.-S. Won, J. Kor. Magn. Reson. Soc. 15, 137 (2011).   DOI   ScienceOn
17 D.-W. Sim, Y.-S. Lee, J.-H. Kim, M.-D. Seo, B.-J. Lee, H.-S. Won, BMB Rep. 42, 387 (2009).   DOI   ScienceOn