• 제목/요약/키워드: TRISO coating

검색결과 28건 처리시간 0.024초

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향 (Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성 (Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle)

  • 김준규;금이슬;최두진;이영우;박지연
    • 한국세라믹학회지
    • /
    • 제44권10호
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

입자 핵연료의 SiC/C 다층 도포층의 미세조직 및 극미세 경도 평가 (Microstructure and Nano-hardness of SiC/C Multi-coated Layers on a Particulate Nuclear Fuel)

  • 최용
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.321-325
    • /
    • 2019
  • Triso-type coating layers of silicon carbide and graphite on UO2 paticulate nuclear fuel were prepared by using fluidized bed type chemical vapor deposition and self-propagating high temperature synthesis methods to make a coated nuclear fuel of a power plant for hydrogen mass-production. The source and carrier gases were the mixture of methyltrichlorosilane and propane, and inert argon. Chemical analysis and microstructure observation showed that the coated layers were inner graphite, middle silicon carbide and outer graphite. The elastic modulus and nano-hardness of the silicon carbide layer were 503 [GPa] and 36 [GPa], respectively.

화학증착법에 의한 구상 $ZrO_2$ 에 열분해탄소와 탄화규소의 다층 코팅 (Multilayer coating of PyC and SiC on $ZrO_2$ spheres by the CVD Process)

  • 박지연;김정일;김원주;류우석;이영우;장종화
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.119-119
    • /
    • 2003
  • 탄화규소나 열분해 탄소는 고온 특성 및 화학적인 안정성 이 우수하여 단미 혹은 코팅재로로 소재의 성능을 향상시키기 위하여 에너지 관련 분야, 반도체 치구 분야, 방위산업 및 항공우주 분야와 원자력 분야에서 다양하게 사용된다. 특히 원자력 분야에서는 고온형 원자로의 노심 요소 부품으로 적용 및 개발을 고려하고 있으며, 대표적인 예로 수소생산용 초고온 가스냉각로의 코팅 핵연료 입자를 들 수 있다. 일반적으로 TRISO라 불리는 가스냉각로 핵연료는 구형 $UO_2$ kemel의 주변을 PyC-SiC -PyC의 삼중 코팅층으로 둘러싸는 구조를 하고 있으며, 이 코팅층들은 kernel물질이 분열하는 동안 발생되는 내부 기체 압력을 견디는 압력용기 역할과 기체나 금속 핵분열 생성물들을 가두는 확산 장벽 역할을 하게 된다. 본 연구에서는 구형의 $UO_2$대신 선행연구를 위하여 구형 ZrO$_2$를 이용하여 증착온도나 시간 및 입력기체비 등의 화학증착 변수로 조절하여 SiC 및 PyC을 코팅하고, 각 변수들에 의한 증착층의 거동을 고찰하고자 하였다.

  • PDF

지르코늄 스폰지를 원료로 사용하여 화학증착법으로 제조된 탄화지르코늄 코팅층의 물성 (Properties of Chemical Vapor Deposited ZrC Coating Layer using by Zirconium Sponge Materials)

  • 김준규;최유열;이영우;박지연;최두진
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.245-249
    • /
    • 2008
  • The SiC and ZrC are critical and essential materials in TRISO coated fuel particles since they act as protective layers against diffusion of metallic and gaseous fission products and provides mechanical strength for the fuel particle. However, SiC and ZrC have critical disadvantage that SiC loses chemical integrity by thermal dissociation at high temperature and mechanical properties of ZrC are weaker than SiC. In order to complement these problems, we made new combinations of the coating layers that the ZrC layers composed of SiC. In this study, after Silicon carbide(SiC) were chemically vapor deposited on graphite substrate, Zirconium carbide(ZrC) were deposited on SiC/graphite substrate by using Zr reaction technology with Zr sponge materials. The different morphologies of sub-deposited SiC layers were correlated with microstructure, chemical composition and mechanical properties of deposited ZrC films. Relationships between deposition pressure and microstructure of deposited ZrC films were discussed. The deposited ZrC films on SiC of faceted structure with smaller grain size has better mechanical properties than deposited ZrC on another structure due to surface growth trend and microstructure of sub-deposited layer.