• Title/Summary/Keyword: TOUGH2

Search Result 192, Processing Time 0.026 seconds

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

Numerical Modeling of Coupled Thermo-hydro-mechanical Behavior of MX80 Bentonite Pellets (MX80 벤토나이트 펠렛의 열-수리-역학적 복합거동 모델링)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.446-461
    • /
    • 2020
  • Numerical simulations of CIEMAT column test in Spain are performed to investigate the coupled thermo-hydro-mechanical (THM) behavior of MX80 bentonite pellets using TOUGH2-FLAC3D. The heater power and injection pressure of water in the numerical simulations are identical to those in the laboratory test. To investigate the applicability of the thermo-hydraulic (TH) model used in TOUGH2 code to prediction of the coupled TH behavior, the simulation results are compared with the observations of temperature and relative humidity with time. The tendencies of the coupled behavior observed in the test are well represented by the numerical models and the simulator in terms of temperature and relative humidity evolutions. Moreover, the performance of the models for the reproduction and prediction of the coupled TH behavior is globally satisfactory compared with the observations. However, the calculated stress change is relatively small and slow due to the limitations of the simple elastic and swelling pressure model used in numerical simulations. It seems that the two models are insufficient to realistically reproduce the complex coupled THM behavior in the bentonite pellets.

Effects of Upset Pressure on Weldability in the Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접 특성에 미치는 업셋압력의 영향에 관한 연구)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of upset pressure on friction weldability. Under the condition of friction time 0.8sec, upset pressure 150MPa, the tensile strength and Charpy impact value of the friction welded joint were 336MPa, $400KJ/m^2$ respectively. And highest temperature of the weld measured was below $800^{circ}K$ which is very lower than melting point of Cu($1356^{circ}K$). Under the same conditions, W grains picked up in Cu matrix from Cu-W profitably affected on these mechanical fracture, and were dispersed in Cu by plastic flow during brake time.

  • PDF

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project (이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트)

  • Kwon, Sangki;Lee, Hyeji
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.146-160
    • /
    • 2017
  • $CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.

A Study on the Anti-Corrosion Paint(EH 2350) Compatibility Verification for Naval Surface Vessels's Cavitation (캐비테이션 발생에 따른 해군 수상함정 방청도료(EH 2350) 적합성 검증에 관한 연구)

  • Choi, Sang-Min;Lee, Ji-Hyeog;Beak, Yong-Kawn;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • The naval surface vessels, which were often exposed to harsh marine environment, tended to be corrosive due to military operations on various sea-areas and courses. Although R.O.K Navy applied various methods to protect further corrosion, the hull corrosion occurred due to cavitation were found on the naval surface vessels at regular and occasional docking. Hull corrosion was a critical factor directly to affect the lifetime of ships and their operational capabilities adversely. In this paper, EH 2350, which was the main anticorrosion paint used by R.O.K. Navy, was compared with DuraTough DL by used by the U.S Navy to collect materials related to anti-corrosion paint. In addition, the paint compatibility verification was conducted through wear abrasion test. Assuming that it was exposed to sea-environment various both abrasion cycle and weight for objective verification. by varying both the abrasion cycles and weights. In this study, the reliability of the EH 2350 conformity, which was used in Naval surface vessels, was secured.