DOI QR코드

DOI QR Code

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production

가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석

  • Received : 2014.01.28
  • Accepted : 2014.03.07
  • Published : 2014.04.30

Abstract

In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

본 연구에서는 지오메카닉스모델을 이용한 가스하이드레이트 회수 생산 과정에서의 해리 발생 및 이에 따른 주변 퇴적층의 역학적 변형을 시뮬레이션 하였다. 지오메카닉스모델은 TOUGH+Hydrate와 FLAC3D 해석 코드를 순차적으로 반복해석하는 기법으로 감압법을 이용한 가스하이드레이트 회수 생산과정에서의 온도, 압력, 포화도 변화가 생산정 주변 퇴적층 내 유효응력, 강성 및 강도 변화에 미치는 영향을 고려할 수 있는 특징이 있다. 회수생산 방식에 따른 모델해석결과 비교를 통해, 감압법과 열자극법을 병행하는 경우 초기 생산량 증대를 가져올 수 있음을 보였다. 또한, 미고결 점토질 퇴적층에서의 회수생산 시 사암층에 비해 상대적으로 변형이 크게 발생함을 보였다.

Keywords

References

  1. 가스하이드레이트 개발사업단, http://www.gashydrate.or.kr/, 28 Jan. 2014.
  2. 임대희, 김정규, 송재준, 2013, 감압법을 이용한 가스하이드레이트 회수생산시 해저지반 거동예측에 관한 수치해석적 연구, 한국암반공학회 추계 총회 및 학술발표회 논문집, 한국암반공학회, 인하대학교, 2013년 10월, pp. 206-211.
  3. Huh, D.G., 2005, Status of gas hydrate research in Korea, J. of the Korean Society for Geosystem Engineering, Vol. 42, No. 3, pp. 206-213.
  4. Hyodo, M,, Li, Y., Yoneda, J., Nakata, Y., Yoshimoto, N., Nishimura, A., 2014, Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments, Marine and Petroleum Geology 51, pp. 52-62. https://doi.org/10.1016/j.marpetgeo.2013.11.015
  5. Itasca, 2002, FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.1, Minneapolis, Minnesota, Itasca Consulting Group, pp. 438. 2009.
  6. Itasca, 2009, FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 4.0, Minneapolis, Minnesota, Itasca Consulting Group, pp. 438. 2009.
  7. Kim, H.M., Rutqvist, J., Ryu, D.W., Synn, J.H., Song, W.K., 2011, Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis, Tunnel and Underground Space (J. of the Korean Society for Rock Mechanics), Vol. 21, No. 5, pp. 394-405.
  8. Kwon, T.H., Cho, K.C., 2008, Excess pore pressure generation in gas hydrate-bearing sediments by thermal changes, Proceedings of Korean Society of Civil Engineers, pp. 937-940.
  9. Lee, J., 2009, The development status and prospect for the production technology of gas hydrate, J. of the Korean Society for Geosystem Engineering, Vol. 46, No. 3, pp. 387-401.
  10. Lee, J.Y., Lee. J., Kim S., 2011, Experimental research trends on gas hydrate production, Proc. of the Korean Society for New and Renewable Energy, 2011 May, pp. 147-2.
  11. Matsui, A., Haneda, H., Ogata, Y., Aoki, K., 2005, The effect of saturation degree of methane hydrate on the shaer strength of synthetic methane hydrate sediments, Proceedings of the 5th International Conference on Gas Hydrates, Tronheim, Norway, pp. 657-663.
  12. Moridis, G.J. Kowalsky, M.B., Pruess, K., 2008, TOUGH+ HYDRATE v1.0 USER'S MANUAL: A code for the simulation of system behavior in hydrate bearing geologic media, LBNL-149E, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  13. Park, S.S., 2008, A study on submarine slope failure due to gas hydrate dissociation, J. of the Korean Society for Geosystem Engineering, Vol. 45, No. 2, pp. 164-173.
  14. Pruess, K., Oldenburg, C. and Moridis, G., TOUGH2 User's Guide Version 2.0, LBNL-43134, 1999.
  15. Rutqvist, J., Moridis, G.J., 2007, Numerical stuides of geomechanical stability of hydrate-bearing sediments, Offshore technology conference, 2007 May, Houston, Texas, U.S.A.
  16. Rutqvist, J., Moridis, G.J., Grover, T., Collett, T., 2009, Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production, J. Petroleum Science and Engineering, Vol. 67, pp. 1-12. https://doi.org/10.1016/j.petrol.2009.02.013
  17. Rutqvist, J., Moridis, G.J., Grover, T., Silpnagarmert, S., Collett, T., Holdich, S.A., 2012, Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments, J. Petroleum Science and Engineering, Vol. 92-93, pp. 65-81. https://doi.org/10.1016/j.petrol.2012.06.004
  18. Ryu, B.J., Lee, S.R., You, D.G., Kim, G.Y., Chun, J.H., Bahk, J.J., Kim, J.H., Lee, J.Y., 2011, The 2nd Ulleung basin hydrate drilling expedition (UBGH2), Proc. of the Korean Society for New and Renewable Energy, 2011 May, pp. 147-1.
  19. Shin, H.J., Lim, J.S., Kim, S.J., 2012, Estimation of porosity and saturation in gas hydrate bearing sediments using well logs and core analysis data of the 2nd wells in Ulleung basin, East Sea, Korea, J. the Korean Society of Mineral and Energy Resources Engineers, Vol. 49, No. 2, pp. 175-185.
  20. Song, Y., Zhu, Y., Liu, W., Zhao, J., Li, Y., Chen, Y., Shen, Z., Lu, Y., Ji, C., 2014, Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation, Marine and Petroleum Geology, Vol. 51, pp. 70-78. https://doi.org/10.1016/j.marpetgeo.2013.11.017
  21. Sung, W., Wang, J.H., Park, J.K., Lee, J.H., Lim J.S., 2009, Hydrate deposit classification based on bottom simulating reflector, J. of the Korean Society for Mineral and Energy Resources Engineers, Vol. 46, No. 3, pp. 300-309.
  22. van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci Soc Am J., Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Cited by

  1. A Case Study of Test Production of Gas from Hydrate Bearing Sediments on Nankai Trough in Japan vol.25, pp.2, 2015, https://doi.org/10.7474/TUS.2015.25.2.133
  2. Numerical Analysis for Fault Reactivation during Gas Hydrate Production vol.26, pp.2, 2016, https://doi.org/10.7474/TUS.2016.26.2.059