• Title/Summary/Keyword: TOF Camera

Search Result 29, Processing Time 0.038 seconds

Automatic extraction of golf swing features using a single Kinect (단일 키넥트를 이용한 골프 스윙 특징의 자동 추출)

  • Kim, Pyeoung-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.197-207
    • /
    • 2014
  • In this paper, I propose an automatic extraction method of golf swing features using a practical TOF camera Kinect. I extracted 7 key swing frames and features using joints and depth information from a Kinect. I tested the proposed method on 50 swings from 10 players and showed the performace. It is meaningful that 3D swing features are extracted automatically using an inexpensive and simple system and specific numerical feature values can be used for the building of automatic swing analysis system.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

View Point Tracking for Parallax Barrier Display Using a Low Cost 3D Imager

  • Wi, Sung-Min;Kim, Dong-Wook
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.105-114
    • /
    • 2008
  • We present an eye tracking system using a low cost 3D CMOS imager for 3D displays that ensures a correct auto stereoscopic view of position- dependent stereoscopic 3D images. The tracker is capable of segmenting the foreground objects (viewer) from background objects using their relative distance from the camera. The tracker is a novel 3D CMOS Image Sensor based on Time of Flight (TOF) principle using innovating photon gating techniques. The basic feature incorporates real time depth imaging by capturing the shape of a light-pulse front as it is reflected from a three dimensional object. The basic architecture and main building blocks of a real time depth CMOS pixel are described. For this application, we use a stereoscopic type of display using parallax barrier elements that is described as well.

  • PDF

Proposal of Camera Gesture Recognition System Using Motion Recognition Algorithm

  • Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2022
  • This paper is about motion gesture recognition system, and proposes the following improvement to the flaws of the current system: a motion gesture recognition system and such algorithm that uses the video image of the entire hand and reading its motion gesture to advance the accuracy of recognition. The motion gesture recognition system includes, an image capturing unit that captures and obtains the images of the area applicable for gesture reading, a motion extraction unit that extracts the motion area of the image, and a hand gesture recognition unit that read the motion gestures of the extracted area. The proposed application of the motion gesture algorithm achieves 20% improvement compared to that of the current system.

Mobile Game Control using Gesture Recognition (제스처 인식을 활용한 모바일 게임 제어)

  • Lee, Yong-Cheol;Oh, Chi-Min;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.629-638
    • /
    • 2011
  • Mobile game have an advantage of mobility, portability, and simple interface. These advantages are useful for gesture recognition based game which should not have much content quantity and complex interface. This paper suggests gesture recognition based mobile game content with user movement could be applied directly to the mobile game wherever recognition system is equipped. Gesture is recognized by obtaining user area in image from the depth image of TOF camera and going through SVM(Support Vectorn Machine) using EOH(Edge Of Histogram) features of user area. And we confirmed that gesture recognition can be utilized to user input of mobile game content. Proposed technique can be applied to a variety of content, but this paper shows a simple way of game contents which is consisted of moving and jumping newly.

The Chinese Characters Learning Contents Based on Gesture Recognition Using HMM Algorithm (HMM을 이용한 제스처 인식 기반 한자 학습 콘텐츠)

  • Song, Dae-Hyeon;Kim, Dong-Min;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.1067-1074
    • /
    • 2012
  • In this paper, we proposed a contents of Chinese characters learning based on gesture recognition using HMM(hidden markov model) algorithm. Input image of the system is obtained in 3-dimensional information from the TOF camera, and the method of gesture recognition is consisted of part of forecasting user's posture in two infrared images and part of recognizing gestures from continuous poses. In the communication between human and computer, this system provided convenience that user can manipulate it easily by not using any further equipment but action. Because this system raise immersion and interest by using two large display and various multimedia factor, it can maximize information transmission. The edutainment Chinese character contents proposed in this paper provide educational effect that use can master Chinese character naturally with interest, and it can be expected a synergy effect via content experience because it is based on gesture recognition.

A Study of the Characteristics of Highly Spatially Resolved CW-laser-based Aerosol Lidar (고공간분해능 연속 광원을 이용한 미세먼지 라이다의 신호 특성에 관한 연구)

  • Sim, Juhyeon;Kim, Taekeong;Ju, Sohee;Noh, Youngmin;Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study we introduce a new method for high-spatial-resolution continuous wave (CW) aerosol lidar that has a high spatial resolution in the near field and a low spatial resolution at long distances. A normal lidar system uses a nanosecond-pulse laser and measures the round-trip TOF between the aerosol and laser to obtain range resolution. In this study, however, we propose a new type of spatially resolving aerosol lidar that uses laser-scattering images. Using a laser-light-scattering image, we have calculated the distance of each scattering aerosol image for a given pixel, and recovered the short-range aerosol extinction. For this purpose, we have calculated the distance image and the contribution range of the aerosol to the given one-pixel image, and finally we have calculated the extinction coefficients of the aerosol with range-resolved information. In the case of traditional aerosol lidar, we can only obtain the aerosol extinction coefficients above 400 m. Using our suggested method, it was possible to extend the range of the extinction coefficient lower then several tens of meters. Finally, we can remove the unknown short-range region of pulsed aerosol lidar using our method.

Development of a dual-mode energy-resolved neutron imaging detector: High spatial resolution and large field of view

  • Wenqin Yang;Jianrong Zhou;Jianqing Yang;Xingfen Jiang;Jinhao Tan;Lin Zhu;Xiaojuan Zhou;Yuanguang Xia;Li Yu;Xiuku Wang;Haiyun Teng;Jiajie Li;Yongxiang Qiu;Peixun Shen;Songlin Wang;Yadong Wei;Yushou Song;Jian Zhuang;Yubin Zhao;Junrong Zhang;Zhijia Sun;Yuanbo Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2799-2805
    • /
    • 2024
  • Energy-resolved neutron imaging is an effective way to investigate the internal structure and residual stress of materials. Different sample sizes have varying requirements for the detector's imaging field of view (FOV) and spatial resolution. Therefore, a dual-mode energy-resolved neutron imaging detector was developed, which mainly consisted of a neutron scintillator screen, a mirror, imaging lenses, and a time-stamping optical fast camera. This detector could operate in a large FOV mode or a high spatial resolution mode. To evaluate the performance of the detector, the neutron wavelength spectra and the multiple spatial resolution tests were conducted at CSNS. The results demonstrated that the detector accurately measured the neutron wavelength spectra selected by a bandwidth chopper. The best spatial resolution was about 20 ㎛ in high spatial resolution mode after event reconstruction, and a FOV of 45.0 mm × 45.0 mm was obtained in large FOV mode. The feasibility was validated to change the spatial resolution and FOV by replacing the scintillator screen and adjusting the lens magnification.

Evaluation of the Radioimmunotherapy Using I-131 labeled Vascular Endothelial Growth Factor Receptor2 Antibody in Melanoma Xenograft Murine Model (흑색종에서의 I-131표지 혈관내피세포성장인자 수용체2항체를 이용한 방사면역치료 평가)

  • Kim, Eun-Mi;Jeong, Hwan-Jeong;Park, Eun-Hye;Cheong, Su-Jin;Lee, Chang-Moon;Jang, Kyu-Yun;Kim, Dong-Wook;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • Purpose: Vascular endothelial growth factor (VEGF) and its receptor, fetal liver kinase 1 (Flk-1), play an important role in vascular permeability and tumor angiogenesis. The aim of this study is to evaluate the therapeutic efficacy of $^{131}I$ labeled anti-Flk-1 monoclonal antibody (DC101) on the growth of melanoma tumor, which is known to be very aggressive in vivo. Materials and Methods: Balb/c nude mice were injected subcutaneously with melanoma cells in the right flank. Tumors were allowed to grow up to $200-250\;mm^3$ in volume. Gamma camera imaging and biodistribution studies were performed to identify an uptake of $^{131}I$-DC101 in various organs. Mice with tumor were randomly divided into five groups (10 mice per group) and injected intravenously; control PBS (group 1), $^{131}I$-DC101 $50\;{\mu}g/mouse$ (group 2), non-labeled DC101 $50\;{\mu}g/mouse$ (group 3), $^{131}I$-DC101 $30\;{\mu}g/mouse$ (group 4) and $15\;{\mu}g/mouse$ (group 5) every 3 or 4 days for 20 days. Tumor volume was measured with caliper twice a week. Results: In gamma camera images, the uptake of $^{131}I$-DC101 into tumor and thyroid was increased with time. Biodistribution results showed that the radioactivity of blood and other major organ was gradually decreased with time whereas tumor uptake was increased up to 48 hr and then decreased. After 4th injection of $^{131}I$-DC101, tumor volume of group 2 and 4 was significantly smaller than that group 1. After 5th injection, the tumor volume of group 5 also significantly reduced. Conclusion: These results indicated that delivery of $^{131}I$ to tumor using FlK-1 antibody, DC101, effectively blocks tumor growth in aggressive melanoma xenograft model.