• Title/Summary/Keyword: TMS320C32 DSP

Search Result 91, Processing Time 0.027 seconds

Real-time implementation of speaker dependent speech recognition hardware module using the TMS320C32 DSP (TMS320C32 DSP를 이용한 실시간 화자종속 음성인식 하드뒈어 모듈 구현)

  • Chung, Hoon;Chung, Ik-joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.14-22
    • /
    • 1998
  • 본 연구에서는 Texas instruments 사의 저가형 부동소수점 디지털 신호 처리기인 TMS320C32를 이용하여 실시간 화자종속 음성인식 하드웨어 모듈을 개발하였다. 하드웨어 모듈의구성은 40MHz 의 TMS320C32, 14bit 코덱인 TLC32044, EPROM 과 SRAM 등의 메모리와 호스트 인터페이스를 위한 로직회로로 이루어져 있다. 뿐만 아니라 이 하드웨어 모듈을 PC 상에서 평가해보기 위한 PC 인터페이스용 보드 및 소프트웨어도 개발하였다. 음성인식 알고리즘은 C 및 어셈블리를 이용한 최적화를 통하여 계산속도를 대폭 개선하였다. 현재 인식률은 일반 사무실 환경에서 30단어에 대하여 95% 이상으로 매우 높은 편이며, 특히 배경음악이나 자동차 소음과 같은 잡음환경에서도 잘 동작한다.

  • PDF

Real-time Implementation of Multi-channel AMR Speech Coder (멀티채널 AMR 음성부호화기의 실시간 구현)

  • 지덕구;박만호;김형중;윤병식;최송인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.19-23
    • /
    • 2001
  • DSP-based implementation is pervasive in wireless communication parts for systems and handsets according to developing high-speed and low-power programmable Digital Signal Processor (DSP). In this paper, we present a real-time implementation of multi-channel Adaptive Multi-rate (AMR) speech coder. The real-time implementation of an AMR algorithm is achieved using 32-bit fixed-point TMS320C6202 DSP chip that operates at 250 MHz. We performed cross compile, linear assembly optimization and TMS320C62xx assembly optimization for real-time implementation. Furthermore, speech data input/output function and communication function with external CPU is included in an AMR speech coder. The AMR Speech coder developed using DSP EVM board was evaluated in ETRI IMT-2000 Test-bed system.

  • PDF

Implementation of a Single-chip Speech Recognizer Using the TMS320C2000 DSPs (TMS320C2000계열 DSP를 이용한 단일칩 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.157-167
    • /
    • 2007
  • In this paper, we implemented a single-chip speech recognizer using the TMS320C2000 DSPs. For this implementation, we had developed very small-sized speaker-dependent recognition engine based on dynamic time warping, which is especially suited for embedded systems where the system resources are severely limited. We carried out some optimizations including speed optimization by programming time-critical functions in assembly language, and code size optimization and effective memory allocation. For the TMS320F2801 DSP which has 12Kbyte SRAM and 32Kbyte flash ROM, the recognizer developed can recognize 10 commands. For the TMS320F2808 DSP which has 36Kbyte SRAM and 128Kbyte flash ROM, it has additional capability of outputting the speech sound corresponding to the recognition result. The speech sounds for response, which are captured when the user trains commands, are encoded using ADPCM and saved on flash ROM. The single-chip recognizer needs few parts except for a DSP itself and an OP amp for amplifying microphone output and anti-aliasing. Therefore, this recognizer may play a similar role to dedicated speech recognition chips.

  • PDF

Real-Time Implementation of Speaker Dependent Speech Recognition Hardware Module Using the TMS320C32 DSP : VR32 (TMS320C32 DSP를 이용한 실시간 화자종속 음성인식 하드웨어 모듈(VR32) 구현)

  • Chung, Ik-Joo;Chung, Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.14-22
    • /
    • 1998
  • 본 연구에서는 Texas Instruments 사의 저가형 부동소수점 디지털 신호 처리기 (Digital Singnal Processor, DSP)인 TMS320C32를 이용하여 실시간 화자종속 음성인식 하 드웨어 모듈(VR32)을 개발하였다. 하드웨어 모듈의 구성은 40MHz의 TMS320C32 DSP, 14bit 코덱인 TLC32044(또는 8bit μ-law PCM 코덱), EPROM과 SRAM 등의 메모리와 호 스트 인터페이스를 위한 로직 회로로 이루어졌다. 뿐만 아니라 이 하드웨어 모듈을 PC사에 서 평가해보기 위한 PC 인터페이스용 보드 및 소프트웨어도 개발하였다. 음성인식 알고리 즘의 구성은 에너지와 ZCR을 기반으로 한 끝점검출(Endpoint Detection) 침 10차 가중 LPC 켑스터럼(Weighted LPC Cepstrum) 분석이 실시간으로 이루어지며 이후 Dynamic Time Warping(DTW)를 통하여 최고 유사 단어를 결정하고 다시 검증과정을 거쳐 최종 인식을 수행한다. 끝점검출의 경우 적응 문턱값(Adaptive threshold)을 이용하여 잡음에 강인한 끝 점검출이 가능하며 DTW 알고리즘의 경우 C 및 어셈블리를 이용한 최적화를 통하여 계산 속도를 대폭 개선하였다. 현재 인식률은 일반 사무실 환경에서 통상 단축다이얼 용도로 사 용할 수 있는 30 단어에 대하여 95% 이상으로 매우 높은 편이며, 특히 배경음악이나 자동 차 소음과 같은 잡음환경에서도 잘 동작한다.

  • PDF

Implementation of Speaker Verification Security System Using DSP Processor(TMS320C32) (DSP Processor(TMS320C32)를 이용한 화자인증 보안시스템의 구현)

  • Haam, Young-Jun;Kwon, Hyuk-Jae;Choi, Soo-Young;Jeong, lk-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.107-116
    • /
    • 2001
  • The speech includes various kinds of information : language information, speaker's information, affectivity, hygienic condition, utterance environment etc. when a person communicates with others. All technologies to utilize in real life processing this speech are called the speech technology. The speech technology contains speaker's information that among them and it includes a speech which is known as a speaker recognition. DTW(Dynamic Time Warping) is the speaker recognition technology that seeks the pattern of standard speech signal and the similarity degree in an inputted speech signal using dynamic programming. ln this study, using TMS320C32 DSP processor, we are to embody this DTW and to construct a security system.

  • PDF

AC Servo Motor Control Using Low Voltage High Performance DSP (저전압 고성능 DSP를 이용한 AC 서보모터 제어)

  • 최치영;홍선기
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has peripheral devices to control AC servo system, the servo technology has met a new development opportunity. Those things make it possible to reduce the time of developing a AC servo system. Fixed point DSP such as TMS320F240x, and TMS320F28x series have a disadvantage in calculating floating number where TMS320C32 or TMS320C31 are floating point DSP. However they usually become a complex hardware system to implement the AC servo system and it increases the cost. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F28l2-version C which has the performance of fast speed, 150MIPS, and a rich peripheral interface such as a 12bit high speed AD converter, QEP(Quadrature Encoder Pulse) circuit, PDPINT(Power Drive Protect Interrupt), SVPWM module and dead time module are used. This paper presents a method to overcome fixed point calculating using scaling all parameters. Also space vector pulse width modulation (SVPWM) using off-set voltage and a digital PI control are implemented to the servo system.

  • PDF

Simulator by use of DSP TMS320C32 for Digital Relay Test (DSP TMS320C32를 이용한 디지털 계전기 시험을 위한 시뮬레이터)

  • Park, C.W.;An, T.P.;Ko, I.S.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.120-122
    • /
    • 2004
  • This paper describes the digital relay simulator by use of DSP for digital relay test. The simulator software has EMTP simulation data file conversion. user define simulation data generation. data analysis engine. etc. The simulator hardware design uses 32bit floating point DSP architecture to achivev flexibility and high speed operation.

  • PDF

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

A design on the control of direct drive robot manipulator using TMS320c30 (TMS320c30을 이용한 직접 구동형 로보트 매뉴퓰레이터의 설계)

  • 손장원;이종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.520-522
    • /
    • 1996
  • The Direct Drive Arm(DDA) is a SCARA typed direct drive manipulator with two degrees-of-freedom(DOF) using the direct drive motor of the NSK company. A controller system for the SCARA robot of DDA is designed using a DSP (TMS32Oc3O), which has the highest performance among the third DSP chips in the TI company. The design objective of the system is to implement dynamic control algorithms and neural control algorithms for real time learning which require a lot of calculations and large memory and have been tested only by simulations so far. The controller uses a DSP, a high speed D/A, 32-bit Counter and a large DRAM to implement advanced robot control algorithms.

  • PDF

Study on Chip Design & Implementation of 32 Bit Floating Point Compatible DSP (32비트 부동소수점 호환 DSP의 설계 및 칩 구현에 관한 연구)

  • Woo, Jong-Sik;Seo, Jin-Keun;Lim, Jae-Young;Park, Ju-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.74-84
    • /
    • 2000
  • This paper deals with procedures for design and implementation of a DSP, which is compatible with TMS320C30 DSP. CBS(Cycle Based Simulator) is developed to study the architecture of the target DSP. The simulator gives us detailed information such as function block operation, control signal values, register condition, bus and memory values when a instruction is being carried out. RTL design is carried out by VHDL. Logic simulation and hardware emulation are employed to verify proper operation of the design. The DSP is fabricated with 0.6${\mu}m$ CMOS technology. The Chip has 450,000 gates complexity, $9{\times}9mm^2$ area, 20 MIPS operation speed. It is confirmed by running 109 instructions out of 114 instructions and 13 kinds of algorithm that the developed DSP has compatibility with TMS320C30.

  • PDF