• Title/Summary/Keyword: TMP

Search Result 333, Processing Time 0.031 seconds

Study on the Measurement of TMP Pumping Speed (터보분자펌프(TMP) 배기속도 측정에 관한 고찰)

  • Kang, S.B.;Shin, J.H.;Cha, D.J.;Koh, D.Y.;Cheung, W.S.;Lim, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.249-255
    • /
    • 2010
  • Methods of the characteristics evaluation of turbo-molecular pumps (TMP) are well-defined in the international measurement standards such as ISO, PNEUROP, DIN, JIS, and AVS. The Vacuum Center in the Korea Research Institute of Standards and Science (KRISS) has recently designed, constructed, and established the integrated characteristics evaluation system of TMPs based on the international documents by continuously pursuing and acquiring the reliable international credibility through measurement perfection. The measurement of TMP pumping speed is normally performed with the throughput and orifice methods dependent on the mass flow regions. However, in the UHV range of the molecular flow region, the high uncertainties of the gauges, mass flow rates, and conductance are too critical to precisely accumulate reliable data. In order to solve the uncertainty problems of pumping speeds in the UHV range, we introduced a SRG with 1% accuracy and a constant volume flow meter (CVFM) to measure the finite mass flow rates down to $10^{-1}$ Pa-L/s with 3% uncertainty for the throughput method. In this way we have performed the measurement of pumping speed down to $10^{-4}$ Pa with an uncertainty of less than 6% for a 1000 L/s TMP. In this article we suggest that the CVFM has an ability to measure the conductance of the orifice experimentally with flowing the known mass through the orifice chambers, so that we may overcome the discontinuity problem encountering during introducing two measurement methods in one pumping speed evaluation sequence.

Membrane Fouling Control Effect of Periodic Water-back-flushing in the Tubular Carbon Ceramic Ultrafiltration System for Recycling Paper Wastewater (제지폐수 재활용을 위한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염 제어 효과)

  • 김미희;박진용
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.190-203
    • /
    • 2001
  • In this study the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes with periodic water-back-flushing. We could investigate effects of watch-back-flushing period, transmembrane pressure (TMP) and flow rate, and find optimal operating conditions. The back-f1ushing time (BT) was fixed at 3 sec, and fi1tration times (FT) werc changed in 15~60 scc, TMP in 1.00~2.50$kg_{f}$/$cm^2$, and the flow rates in 0.27~1.75 L/min. The optimal conditions were discussed in 7he viewpoints of dimensionless permeate flux (J/J$_{0}$), total permeate volume ($V^T$) and resistance of membrane fouling ($R^f$). Optima1 back-flushing period was BT/FT=0.20, suggesting that the frequent back-flushing should decrease membrane fouling. Optimal TMP in the viewpoint of $V^T$ was 1.00~1.55$kg_{f}$/$cm^2$, suggesting that rising TMP should increase membrane fouling and decrease permeate flux. But, rising f1ow rate should decrease membrane fouling and increase permeate flux. Then, average rejection rates of pollutants filtratedby carbon ceramic membranes were 88~98 % for turbidity, 48~72% fort $COD_{cr}$ and 37~76% for TDS.

  • PDF

Effect of Tetramethylpyrazine on Pro-Inflammatory Cytokine Expressions in Mouse Brain Tissue following Intracerebroventricular Lipopolysaccharide Treatment (Tetramethylpyrazine이 LPS의 뇌실주입에 따른 생쥐 뇌조직의 Pro-Inflammatory Cytokines 발현에 미치는 영향)

  • Choi, Yong-Seok;Won, Jong-Woo;Yoo, Inwoo;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • Objectives : Tetramethylpyrazine (TMP) is an active ingredient in Ligusticum wallichii and has a wide range of neuroprotection effects. This study investigated anti-neuroinflammatory effect of TMP on brain regions in intracerebroventricular (i.c.v.) lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : TMP was administered intraperitoneally at doses of 10, 20, and 30 mg/kg at 1 h prior to LPS (3 mg/kg) i.c.v. injection. mRNA level of pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$ and IL-6, was measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Cyclooxygenase-2 (COX-2) positive cells in the hypothalamus was also observed using immunohistochemistry at 24 h after the LPS injection. Results : At a dose of 30 mg/kg TMP significantly attenuated up-regulation of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA in the cerebral cortex and IL-$1{\beta}$ mRNA in the hippocampus. In the hypothalamus, doses of 20 mg/kg and 30 mg/kg TMP significantly attenuated up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 mRNA induced by the LPS injection. In addition, TMP (30 mg/kg) significantly reduced the number of COX-2 positive cells in the hypothalamus. Conclusion : These results indicate that TMP has an anti-inflammatory effect on neuroinflammation, especially in the hypothalamus, induced by LPS i.c.v. injection and suggest that TMP-containing Ligusticum wallichii may play a modulatory role on the systemic responses following hypothalamic inflammation.

Development of STp-301(C)/451(C) Turbomolecular Pump

  • Enomoto, Y.;Enosawa, H.;Takahashi, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.61-62
    • /
    • 1995
  • Seiko Seiki develops and munufactures magnetic Bearing type Turbomolecular Pumps (MB-TMP), Seiko shipped 14,000 MB-TMPs and holds the world's largest share in the MB-TMP field. It developed a new 300 (l/s) class turbomolecular pump.

  • PDF

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant (유전자알고리즘을 이용한 막오염 시계열 예측 연구)

  • Lee, Jin Sook;Kim, Jun Hyun;Jun, Yong Seong;Kwak, Young Ju;Lee, Jin Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.444-451
    • /
    • 2016
  • Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge (PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성)

  • Won, In Hye;Jang, Wongi;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.

Membrane Concentrate Thickening by Hollow-fiber Microfilter in Drinkin Water Treatment Processes

  • 이병호
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.100-100
    • /
    • 1991
  • A novel system to thicken the concentrated colloidal solution from membrane water treat-ment processes was developed. A hollow-fiber microfilter(hydrophilic polyethylene nominal pore size 0.1 μm total surface area 0.42 m2) was installed in an acrylic housing that has an aeration port 5 cm below the membrane and a clarifier in the bottom. The concentrate was uniformly supplied from the top of the housing. Bacuum filtration caused downward flow of concentrate and as a result thickening interface. The addition of poly-aluminum chloride (PAC) resulted in rapid increase of trans-membrane pressure (TMP) and in no improvement of the filtered water turbidity and thickening process. Two types of con-centrate and concentrate turbidity had little effect on the increase of TMP and concentrate thickening. It was observed that for the same height of membrane housing membrane surface area to housing volume (A/V) ratio had significant effect on the increase of TMP. When the housing volume was increased ten times the increasing rate of TMP was three times faster as compared to the original housing. A hydraulic model successfully simulated the formation and sedimentation of thickening interface.

MBR공정의 플럭스 향상 기술에 관한 연구

  • No, Seong-Hui;Kim, Seon-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.145-148
    • /
    • 2002
  • Membrane bioreactors for wastewater treatment must operate for long periods without chemical cleaning. This study investigates the critical flux concept introduced by Field et al. as a means for achieving this goal. We conducted two series of tests: at fixed transmembrane pressure(TMP) and at fixed permeate flux. set by a volumetric pump on the permeate. Comparison of constant pressure and constants flux tests under same conditions showed that the critical flux is almost identical to the limiting or pressure independent flux obtained in constant pressure. More generally, constant flux procedure below the critical flux avoids overfouling of the membrane in the initial stage and is more advantageous for membrane bioreactor operation.

  • PDF

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure

  • Kojio, Ken;Nozaki, Shuhei;Takahara, Atsushi;Yamasaki, Satoshi
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment contents of 20 and 30 wt% and BD/TMP ratios of 10/0 and 8/2 were chosen. Differential scanning calorimetry and small-angle X-ray scattering measurements revealed that the degree of microphase separation increased with an increase in both hard segment content and BD ratio. The Young's modulus and strain at break of the 1,4-H6XDI-based PUE were 6-20 MPa and 5-15, respectively. Incorporation of 20% TMP as a cross-linking agent into BD increased the melting temperature of the hard segment chains, that is, heat resistance, and decreased the Young's modulus. This could be due to the low density of the physical cross-linking network and the dispersion of hard segment chains in the soft segment matrix in the PUE in the presence of 20% TMP.