• 제목/요약/키워드: TMCS

검색결과 35건 처리시간 0.023초

Al 합금 다이캐스팅 용 타이타늄 기지 복합재료 슬리브의 내용손성 및 내마모성 평가 (Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting)

  • 최봉재;성시영;김영직
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.176-182
    • /
    • 2012
  • The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and $B_4C$ leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

Surface Modification of Thin Film using Trimethylchlorosilane Vaporization Treatment

  • Choo, Byoung-Kwon;Kim, Ki-Hwan;Song, Na-Young;Choi, Jung-Su;Park, Kyu-Chang;Ang, Jin;Kim, Jin-Ook;Nam, Yeon-Heui;Chae, Gi-Sung;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.900-903
    • /
    • 2007
  • We introduce non-contact surface modification using trimethylchlorosilane (TMCS) for thin film transistor application. The surface is not contacted to the TMCS solution because it is vaporized at room temperature. The hydrophobic surface with contact angle $of\;{\sim}\;70^{\circ}$ can be achieved by the transfer of TMCS using a PDMS mold.

  • PDF

감각형 미디어 제어 시스템 (TMCS : Tangible Media Control System)

  • 오세진;장세이;우운택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1356-1363
    • /
    • 2004
  • 본 논문에서는 미디어 컨텐츠를 직관적으로 조작할 수 있는 새로운 형태의 감각형 미디어 제어 시스템(TMCS: Tangible Media Control System)을 제안한다. 현재 대부분의 사용자들은 키보드와 마우스를 사용하여 디지털 미디어 컨텐츠를 접하고 있으나 이는 사용자가 미디어 컨텐츠를 조작하는 데 있어서 직관적이지 못한 단점을 가진다. 제안된 시스템은 키보드와 마우스를 대신하여 일상 생활의 오브젝트에 RFID 태그와 트래커를 내장시킨 감각형 오브젝트를 이용하여 사용자가 직관적으로 미디어 컨텐츠를 접근하고 제어할 수 있는 감각적인 인터페이스를 제공한다. 그리고 사용자의 기호에 따라 미디어 컨텐츠들을 합성하거나 조작할 수 있는 기능을 제공함으로써 미디어 컨텐츠와 다양한 상호 작용을 지원한다. 또한 사용자 및 상황 정보를 이용하여 사용자의 기호에 따른 개인화 된 미디어 컨텐츠를 제공함으로서 사용자의 욕구를 충족 시켜 줄 수 있는 환경을 제공한다. 더 나아가 이러한 장점을 기반으로 하여 인터렉티브 멀티미디어 재생기 및 제작기, 그리고 멀티미디어 기반의 교육 및 오락 프로그램 등 다양한 분야에 적용할 수 있다.

상압건조 물유리 에어로젤에 대한 표면개질제의 영향 (Surface modifiers on the waterglass aerogels prepared by ambient drying process)

  • 김태정;남산;오영제
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.173-178
    • /
    • 2006
  • Silica aerogel with ultra low density and high porosity has been focused on versatile application due to its fascinating properties. Ambient drying process of waterglass, in this study was researched to fabricate a crack-free monolith body in the point view of cost effective way. Wet gel was obtained by removing of $Na^{+}$ ions in waterglass, which contains 8 wt% of $SiO_{2}$. Xylene, which has a low vapor pressure, was used as a solution substitutor to prevent the formation a cracks during drying. Various surface modifiers like as hexamethyldisilazane (HMDSZ), trimethylchlorosilane (TMCS), methyltriethoxylsilane (MTES), methyltrimethoxysilane (MTMS) and phenyltriethoxysilane (PTES) were used in order to improve hydrophobicity of the waterglass Silica aerogel. Some physical properties of the surface modified aerogels were investigated by FT-IR, TGA, BET and SEM. Hydrophobicity and hydrophilicity of Silica aerogel is attributed to the Si-OH bond and the non-polar C-H bond groups on the surface of aerogel. Crack-free waterglass aerogel with >90 % of porosity, 17 nm of pore size and <0.15 $g/cm^{3}$ of density was prepared. HMDSZ and TMCS are effective as a surface modifier

(TiB+TiC) 입자강화 Ti기 복합재료의 접촉하중에 따른 내마모 특성 (Effect of Contact Load on Wear Property of (TiB+TiC) Particulates Reinforced Titanium Matrix Composites)

  • 최봉재
    • 한국주조공학회지
    • /
    • 제37권4호
    • /
    • pp.115-122
    • /
    • 2017
  • The aim of this research is to evaluate the wear properties of (TiB+TiC) paticulate reinforced titanium matrix composites (TMCs) by in-situ synthesis. Different particle sizes (1500, $150{\mu}m$) and contents (0.94, 1.88 and 3.76 mass% for Ti, 1.98 and 3.96 mass% for the Ti6Al4V alloy) of boron carbide were added to pure titanium and to a Ti6Al4V alloy matrix during vacuum induction melting to provide 5, 10 and 20 vol.% (TiB+TiC) particulate reinforcement amounts. The wear behavior of the (TiB+TiC) particulate reinforced TMCs is described in detail with regard to the coefficient of friction, the hardness, and the degree of reinforcement fragmentation during sliding wear. The worn surfaces of each sliding wear condition are shown for the three types of wear studied here: transfer layer wear, particle cohesion wear and the development of abrasive areas. The fine reinforcements of TMCs were easily fragmented from the Ti matrix as compared to coarse reinforcements, and fragmented debris accelerated the decrease in the wear resistance.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가 (Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites)

  • 최봉재;김영직
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구 (Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent)

  • 이찬;한우제;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.127-132
    • /
    • 2019
  • 본 연구에서는 liquid-solid solution 합성법을 통해 고유전 페로브스카이트 구조의 barium strontium titanate(Ba0.6Sr0.4TiO3, BSTO)를 합성하여 trimethylsilyl chloride(TMCS)를 silylation agent로 이용한 표면개질을 진행하였다. Silylation 표면개질을 활용하여 기존 BSTO 나노입자 표면에 있던 -OH 리간드와 TMCS가 갖고 있는 Cl을 반응시켜 나노입자 표면의 리간드를 -Si, -CH3로 치환하였다. 다양한 TMCS 농도의 변화를 주어 silylation을 진행했고, Fourier-transform infrared spectroscopy 및 X 선 회절 분석, 전계방사 주사전자현미경을 통해 silicon network 및 결정구조, 나노입자의 크기를 확인하였다. 접촉각 변화 관찰을 통해 가장 많이 silylation된 BSTO 나노입자에서 120.9°인 소수성 특성을 확인하였다. 나노입자의 silylation을 통해 D.I water 내 BSTO 나노입자의 소수화 정도를 확인하였다.

상압건조 나노다공성 실리카 에어로젤에 대한 개질제 효과 (Effect of surface modifiers on the nano porous silica aerogels prepared by ambient drying process)

  • 김태정;오영제
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.77-83
    • /
    • 2007
  • Nanoporous silica aerogels with various surface modifiers were prepared by ambient drying process. Tetraethylorthosilicate (TEOS) were used a raw material. Ambient drying process for various surface modifier was studied in the point of view of a crack-free monolith and thin films and low cost. Various kinds of surface modifiers like as hexamethyldisilazane (HMDSZ), trimethlychlorosilane (TMCS), methlytriethoxylsilane (MTES), and methlytrimethoxysilane (MTMS) were studied in order to enhance hydrophobicity for the silica aerogel. Surface modified aerogels were evaluated by FT-IR, TG, BET, SEM and wetting angle measurement. Homogeneous and crack-free aerogels were obtained by modifying the HMDSZ and the TMCS. However silica xerogel was obtained when modified with MTMS, MTES.

실리카에어로겔의 상압합성 및 특성연구(I) (Syunthesis of Silica Aerogel at Ambient Pressure and Characterization (I))

  • 강신규;최세영
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1394-1402
    • /
    • 1996
  • The Silica gel with the density of 0.2g/cm3 and porosity of 90% was synthesized. The silica wet gel was dried and heat-treated under the ambient pressure after modification of the wet gel surface by TMCS. Specific surface area total pore volume and mean pore radius of dried gel were all increased with increasing heat treatment temperature and confirmed about 1400m2/g, 4.5cc/g and 8 nm respectively after heat treatment above 25$0^{\circ}C$. But the pore size distribution of dried gel was in the range of 1-100nm and was almost indepen-dent of temperature. As the result of external shape pore characteristics and microstructure of gel using SEM similar properties were observed between the silica gel synthesized in this study and the silica aerogel through the super critical drying.

  • PDF