• Title/Summary/Keyword: TMC 강재

Search Result 28, Processing Time 0.021 seconds

A Study for Structural Stabilities of Beams Built with TMC Fire Resistant Steels by Analytical Method at High Temperatures (해석적 방법에 의한 TMC 건축용 내화강재 적용 보부재의 고온 내력평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.60-66
    • /
    • 2017
  • Steel framed building can be destroyed due to deteriation of structural stabilities in a fire. This leads a TMC Fire Resistant Steels and this study analyzed the structural stabilities such as a deflection and a reduction of maximum load capacity for the structural beams built with a TMC Fire Resistant Steel. In this study the structural stabilities were evaluated using a mechanical properties in high temperatures not only a heat transfer theory but a heat stress anlaysis with a statistically determinated beam and a statistially indeternated one. The results showed that a TMC Fire Resistant Steels demonstrated a little lower those of Fire Resistant Steels.

A Study on the Materials Characteristics of SM570TMC Plates (SM570TMC 강재의 재료특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.365-373
    • /
    • 2005
  • There is increasing need for high-strength steel especially for the high-rise steel building structure. High- strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels.The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel, which was developed recently in Korea, was tested to evaluate mechanical properties and welding characteristics for use as a structural steel. Yield phenomenon of SM570TMC steel, which is continuous yielding, is quite different from that of conventional steel. The distributions of yield strength of SM570TMC steel were uniform regardless of thickness, while the minimum yield strength was 440MPa. Also, the flat distributions of hardness in z-direction were found to comprise one of the important properties. Results of the charpy impact tests at -5oC revealed toughness values of SM570TMC steel, which were higher than those of equivalent as rolled steel. Carbon equivalent(Ceq) values of SM570TMC steel, which were related to welding performance, were lower than those of equivalent as rolled steel.

Hysteretic Behavior Characteristics of SM490-TMC Steel Column (SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성)

  • Chang, Kyong Ho;Jang, Gab Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.833-840
    • /
    • 2006
  • In design of steel column member using TMCP steels, hysteretic behavior characteristics of steel column must be clarified. To predict hysteretic behavior of steel column using TMCP steels, a cyclic plasticity model is necessary which can consider the mechanical characteristics and stress-strain relationship of TMCP steels. In this paper, a cyclic plasticity model of SM490-TMC was formulated based on monotonic and cyclic loading tests. The formulated cyclic plasticity model was applied to 3-dimensional finite element analysis. Hysteretic behavior characteristics of steel circular column and H-section column using SM490-TMC was presented by carrying out numerical analysis. Also, influence of SM490-TMC on hysteretic behavior of steel column was presented by comparing analysis results both SM490 and SM490-TMC steel column.

A Study on the Welding Properties of SM570TMC Steel Plate (SM570TMC 강재의 용접부 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa;Chung, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.665-675
    • /
    • 2006
  • With building structures becoming higher and longer-spanned, the need for high-strength and reliable steel is increasing. For this reason, the SM570TMC steel plate was developed. Despite its excellent mechanical properties, however, its welding properties, which are well-known to be superior to those of other equivalent steel plates, have not been verified yet. In this study, welding specimens fabricated via SA and FCA welding, with two domestic welding materials and one Japanese welding material in site welding conditions, were evaluated.

A Study on the Characteristics of SM570TMC Plates in Compression Members (SM570TMC 강재의 압축재 특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.357-363
    • /
    • 2005
  • There is a great need for high-strength steel especially for the high-rise steel building structure. High-strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether the inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel was tested to evaluate buckling strength under axial compressive force. The comparison tests for local buckling strength evaluation of box-type and H-shaped welded columns were performed with variable width-thickness ratios. As for the experimental check, the maximum strength of stub column was determined by local buckling as far as the limit of width-to-thickness ratio was satisfied with current design codes. Also, the strength of the stub column did not decrease suddenly by local buckling before maximum strength even when the ratio is not satisfied. The buckling strength of SM570TMC steel was higher than both ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) specifications.

Evaluation of Forming Performance of TMC Steel Pipes & Tubes for Building Structure (건축구조용 TMC 강관의 가공성능 평가)

  • Im, Sung Woo;Kim, Jong Seong;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.43-49
    • /
    • 2004
  • With building structures becoming higher and having longer spans, new structural steel with better strength, thicker plate, and performance may be required rather than conventional structural steel. TMC steel is widely used in building structures largely due to its excellent seismic performance, superior weldability, and design strength that is not affected by plate thickness. To make use of TMC steel in pipe structures with large diameter and heavy wall, however, the this study, the degradation of material properties in submerged are welded SM520TMC steel pipes and tubes was evaluated using variable fabrication process and material change. Degradation test results showed that the yield and ultimate strength increased and elongation decreased regardless of the mode of fabrication, i.e., through roll bending or press forming, or steel used, i.e., domestic SM520TMC steel or SM520TMC steel from Japan.

The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns (SM570TMC강을 이용한 콘크리트충전강관 합성기둥의 설계기준 항복강도)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.205-213
    • /
    • 2008
  • The objective of this study is to evaluate the yield stress of SM570TMC CFT column subject to axial force. These columns were evaluated and compared by statistical tests, during which the displacements and axial loads of column specimens were measured. Test results showed that the yield stress of CFT columns under axial load could be predicted using the previously proposed the yield stress of steel columns.

A Study of Material Characteristics of 120mm-Thick SM490TMC Plate (SM490TMC 극후판재 120mm의 소재특성에 관한 연구)

  • Kim, Sang Seup;Lee, Cheol Ho;Lee, Eun Taik;Han, Tae Ho;Choi, Young Han;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • Seven types of tests were conducted to experimentally evaluate the material properties of ultral-thick (or 120mm-thick) SM490TMC plate. The investigation of through-thickness properties was among the most significant considerations. All chemical and mechanical test results showed the through-thickness homogeneity as required and conformed to the KS(Korean industrial Standards), although the thickness was 1.5 times thicker than the thickness limit (80mm) imposed by Steel Structure Design Code. No reduction in the yield strength of 120mm-thick SM490TMC plate is recommended for design.

A Study on Elasto-Plastic Behavior of Column-to-Beam Welded Connection with 600MPa Class High Performance Steel (600MPa급(SM 570 TMC) 고성능강 기둥-보 용접접합부의 탄소성 거동에 관한 연구)

  • Kim, Jong Rak;Oh, Young Suk;Baek, Ki Youl;Chang, Sung Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.783-792
    • /
    • 2008
  • While the recent high demand for mega-tall buildings has led to the development of high-performance and high-strength steels, the requirements for architectural-structure-performance steel have been raised as engineers recognize the potential damage that an earthquake can wreak on a tall building. A 600MPa-class steel has emerged to meet such need, and many studies are currently exploring its practical applications on civil engineering works and mega-tall buildings. The available data on the horizontal-force behaviors of structures built with such new steel, however, are still insufficient. There is an urgent need to look into its design data, especially its toughness, and to compare the plastic strain ratios of column-to-beam connections using high-strength steel and regular steel. One of the first studies on the behavior of a column-to-beam connection using 600MPa-class steel (SM570 TMC), this thesis analyzes such steel's structural performance by conducting a structural test on seismic resistance on a full-scale column-to-beam welded connection with non-scallop and recommended-scallop details. Compared with the previous studies on SM490, this thesis evaluates the weldability of SM570 TMC and presents the latter's seismic design data for use in testing its practical application.

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.