

SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성

Hysteretic Behavior Characteristics of SM490-TMC Steel Column

장경호*・장갑철**

Chang, Kyong Ho · Jang, Gab Chul

Abstract

In design of steel column member using TMCP steels, hysteretic behavior characteristics of steel column must be clarified. To predict hysteretic behavior of steel column using TMCP steels, a cyclic plasticity model is necessary which can consider the mechanical characteristics and stress-strain relationship of TMCP steels. In this paper, a cyclic plasticity model of SM490-TMC was formulated based on monotonic and cyclic loading tests. The formulated cyclic plasticity model was applied to 3-dimensional finite element analysis. Hysteretic behavior characteristics of steel circular column and H-section column using SM490-TMC was presented by carrying out numerical analysis. Also, influence of SM490-TMC on hysteretic behavior of steel column was presented by comparing analysis results both SM490 and SM490-TMC steel column.

Keywords : hysteretic behavior, cyclic plasticity model, SM490-TMC, steel circular column, h-section column

요 지

TMCP 강재를 적용한 기둥부재의 정확한 내진설계를 위해서는 반복하중 작용시 기둥부재에 발생하는 이력거동의 특성을 명확히 파악해야 한다. 이러한 이력거동을 정확히 예측하기 위해서는 반복하중 작용시 TMCP 강재의 역학적 특성 및 응력-변형률 관계를 구현할 수 있는 반복소성모델이 필요하다. 본 연구에서는 먼저 단조 및 반복하중실험에 기초하여 SM490 및 SM490-TMC 강재의 반복소성모델을 정식화하였으며 이를 3차원 탄소성 유한요소해석에 적용하였다. 수치해석을 통하여 SM490-TMC 강재를 적용한 원형과 H형 기둥부재의 이력거동의 특성을 파악하였다. 또한 해석결과를 SM490강재가 적용된 기둥부재의 해석결과와 비교하여 SM490-TMC 강재가 원형 및 H형 기둥부재의 이력거동에 미치는 영향을 명확히 하였다. 핵심용어 : 이력거동, 반복소성모델, SM490-TMC, 원형 기둥부재, H형 기둥부재

1.서 론

최근 국내에 건설되고 있는 토목구조물의 장경간화, 대형화 및 고층화로 인하여 고성능 극후판 강재의 사용이 요구되고 있다. 이 러한 요구에 부응하여 생산되고 있는 TMCP(Thermo Mechanical Control Process)강은 동일강도의 일반강재에 비해 판두께가 증가 하더라도 강도저감이 발생하지 않으며 고강도, 저탄소당량으로 인 성과 용접성이 우수하여 점차 그 사용이 증가하고 있다.

이와 같은 TMCP강재의 장점으로 인하여 일본의 경우 두 께 40 mm이상의 소수주형교를 중심으로 교량에 TMCP강재 의 적용이 점차 일반화되고 있다. 유럽의 경우 1991년부터 TMCP강재를 교량에 적용하기 시작하였으며 현재는 일반화 되어 있는 상태이다. 그리고 국내의 경우 건축 및 조선분야 에서 TMCP강재가 사용되며 현재 "도로교 설계기준(2005)" 및 "도로교 표준시방서(2005)"등에 TMCP강재가 사용강재 로 등록되어 있으며 토목분야에도 점차 그 사용이 증가하고 있는 추세이다.

TMCP강재가 적용된 강구조물은 지진과 같은 임의의 반복 하중 작용시 대변형 및 반복소성거동이 발생하며 이로 인하 여 대상구조물의 성능이 저하된다. 그러므로 TMCP강재가 적용된 강구조물의 정확한 설계를 위해서는 반복하중 작용 시 대상구조물의 이력거동 특성을 파악해야 한다. 이러한 TMCP 강부재의 이력거동을 파악하기 위해서는 단조 및 반 복하중을 받는 TMCP강재의 역학적 특성 및 응력 변형률 관계를 구현할 수 있는 반복소성모델과 이를 적용한 해석기 법이 필요하다. 또한, 점차 후판화된 강구조물은 기존의 격 자, 판 및 쉘요소를 적용한 해석기법으로는 그 성능 및 안 전성을 평가하기에는 많은 결점이 있다. 즉, 두께방향응력을 고려할 수 있는 3차원적 해석기법이 필요하다. 국내의 경우 TMCP 강재의 기계적성질 및 용접특성에 관한 연구(김덕재 등, 1994; 김화중 등, 1993; 김희진, 1986; 방중석 등, 1993; 용환선 등, 1995)가 진행중이나 TMCP강재의 반복소 성모델에 관한 연구 및 TMCP강재를 적용한 강기둥부재 거 동 특성에 관한 연구는 아직 미진하다.

.....

^{*}정회원ㆍ중앙대학교 공과대학 건설환경공학과 교수(E-mail:changkor@cau.ac.kr)

^{**}정회원·교신저자·중앙대학교 대학원 토목공학과 공학박八(E-mail : gabchul.jang@gmail.com)

본 연구에서는 먼저 SM490 및 SM490-TMC 강재의 단 조 및 반복하중실험을 수행하였으며 실험결과에 기초하여 반 복소성모델을 정식화하였다. 정식화된 반복소성모델을 8절점 입체요소를 이용한 3차원 탄소성 유한요소해석에 적용하였 다. 3차원 탄소성 유한요소 적용시 강부재의 대변형 현상을 고려하기 위해 유한변위이론이 적용되었다. 3차원 탄소성 유 한요소해석을 통하여 SM490-TMC 및 SM490 강재가 적용 된 원형 강기둥부재 및 H형 강기둥부재의 단조 및 반복하중 해석을 수행하였다. 원형강기둥은 단면형상비(지름-두께비)와 적용강재(SM490, SM490-TMC)를 파라메터로한 해석을 수행 하였으며 H형 강기둥부재는 단면치수(박관, 후관)와 적용강재 를 파라메터로한 해석을 수행하였다.해석결과를 통하여 단조 및 반복하중 작용시 SM490-TMC 기둥부재 이력거동의 특성 을 명확히 파악하였으며 SM490 기둥부재의 해석결과와 비교 하여 SM490-TMC강재가 원형 및 H형 강기둥부재의 이력거 동 및 변형성능에 미치는 영향을 명확히 파악하였다.

2. SM490-TMC와 SM490강재의 실험 및 반복소 성모델의 정식화

본 연구에서는 SM490 및 SM490-TMC 강재의 반복소성

모델을 정식화하기 위해 먼저 단조하중 및 반복허중 실험을 수행하였으며 그 과정 및 결과는 다음과 같다.

2.1 강재 실험 및 조건

재료실험의 목적은 SM490 및 SM490-TMC 강재의 단조 및 반복하중 작용시 응력-변형률 관계 및 역학적 특성을 파 악하여 이를 이용하여 대상강재의 반복소성모델을 정식화하 는데 있다. ASTM규정을 참조하여 환봉 인장시험편과 저싸 이클 피로시편을 각각 제직하여 실험을 수행하였다. 실험시 대상강재의 기계적 성질 및 재료상수를 산출하기 위해 실험 적 오차범위내 동일한 결과 및 경향이 나올 때 까지 3회 이상 실험을 반복적으로 수행하였다. 변위제어방식을 이용하 였으며 재하속도는 정적상태을 가정하여 10⁻⁴s⁻¹의 변형률속 도로 실험을 수행하였다.

2.2 실험결과 및 고찰

그림 1은 SM490 및 SM490-TMC 강재의 실험결과를 보 이며 이 결과를 통해 계산된 재료정수는 표 1과 같다. 여기 서, 와 는 변형률경화영역 초기소성계수과 초기소성변형률로 항복고원의 크기를 나타낸다.

그림 1(a)는 단조하중실험 결과로 SM490-TMC강재의 경

표 1. 기계적 성질

	제원						
강종	YS](MPa)	TS(MPa)	YR(%)	E(GPa)	E_{st}^{p} (GPa)	\mathcal{E}_{st} (%)	EL(%)
SM490	365	549	66.5	204	10.4	1.24	30.6
SM490-TMC	367	562	65.3	220	8.80	1.28	37.8

*YS=항복응력, TS=인장응력, YR=항복비, E=탄성계수, E_{st}^p =초기소성계수, ϵ_{st} =초기소성변형률 EL=연신률

우 항복응력(YS)과 인장응력(TS)이 SM490강재에 비해 미소 하게 높은 값을 보이고 있다. 연신률(EL)의 경우 SM490-TMC강재가 37.8%로 SM490강재의 연신률(30.6%)에 비해 약 24%정도 향상됨을 나타내고 있다.

그림 1(b), (c)의 반복하중 실험결과로 SM490와 SM490-TMC 강재의 이력곡선이 거의 유사한 거동을 보이고 있다. 그림 1(d), (e)는 일반적 반복하중을 받는 구조강재에서 발생 하는 "탄성영역 감소현상"을 정량적으로 측정하기 위해 수 행된 실험이다. 초기항복응력의 크기를 진폭으로 반복하중을 재하하여 실험을 수행하였으며 그림 1(f)는 측정된 SM490 및 SM490-TMC 강재의 탄성역크기(k/k₀)를 비교한 결과이다. 비교결과 SM490 강재가 SM490-TMC 강재에 비해 탄성영 역 감소정도가 완만하며 그 크기도 상대적으로 점차 높은 값을 보이고 있다. 탄성영역감소효과에 대한 제안모델은 식 (3)에 나타내었다.

2.3 3차원 탄소성 유한요소해석의 정식화

본 연구에서 사용된 3차원 탄소성 유한요소해석은 저자에 의해 유한변위이론과 제안 반복소성모델을 적용하여 개발되 었으며 실험과 비교를 통하여 강부재의 대변형 및 소성이력 거동을 정도있게 구현할 수 있음을 검증하였다. 제안 반복소 성모델과 3차원 탄소성 유한요소해석의 정식화 과정은 다음 과 같다.

유한변형중인 변위-변형률 관계의 정식화에 있어서 그린변 형률텐서(Green's strain tensor)를 적용하였으며 응력-변형률 관계에서는 변형중 강체회전과 대변형을 수반하는 재료의 비 선형거동을 정확히 구현할 수 있는 키르쵸프응력의 야만속 도형(Jaumann's derivative of kirchoff stress)구성식을 적용 하였다(Bathe 등, 1979; Zbib, 1993).

그림 2는 일축응력상태에서 저자가 제안한 반복소성모델과 소성계수의 천이과정을 보인다(장경호 등, 2004a; 장경호 등, 2004b; 장경호 등, 2004c). 임의의 반복하중을 받는 강구조물 의 복잡한 이력거동을 예측하기 위해 반복소성모델을 3차원 탄소성 유한요소해석에 적용하였다. 제안된 반복소성모델은 앞 절의 단조 및 반복하중 실험결과에 기초하여 제안하였으

그림 2. 제안 반복소성모델 및 소성계수의 천이

며 일축응력상태에서 재하상태(Loading state)와 제하상태 (Unloading state)로 구분하여 식(1), (2)와 같이 정식화된다.

$$E_L^P = E_{st}^P \cdot \beta_L \cdot \ln\left(1 + \frac{x}{\alpha_L}\right) \tag{1}$$

$$E_U^P = E_L^P \cdot \boldsymbol{\beta}_U \cdot \ln\left(1 + \frac{x}{\alpha_U}\right)$$
(2)

식(1)에서 x는 항복고원을 제외한 소성변형률($\varepsilon^{P} - \varepsilon_{st}^{P}$)을 나타내고 있다. 그리고 α_{L} 와 β_{L} 는 강재의 단조재하실험에 의해 계산되어 지는 재료상수이며 E_{st}^{P} 는 초기변형률경화계 수로 단조재하실험을 통해 계산된다. 식(2)에서 α_{L} 와 β_{L} 는 반복하중재하실험에 의해 계산되어 지는 재료상수이며 E_{L}^{P} 는 하중 반전 전(before loading) 재하상태의 소성계수를 나타내고 있다.

구조용 강재의 경우 반복하중이 진행될수록 탄성영역의 크 기가 감소되는 "탄성영역감소효과"가 발생한다. 본 연구에서 는 이러한 현상을 구현하기 위하여 탄성영역의 크기(k)를 식 (3)과 같이 제안하였다.

$$k/k_0 = k_{\infty} - (1 - k_{\infty}) \cdot \tanh(\alpha_k h)$$
(3)

여기서, k_0 는 초기탄성영역의 크기이며 x는 항복고원을 제외 한 소성변형률($\epsilon^P - \epsilon_{st}^P$)을 나타내고 있다. k_{∞} 와 α_k 는 강재의 반복하중재하실험에 의해 계산되어지는 재료상수이며 무차원 단위이다.

위와 같이 일축응력상태에서 정식화된 반복소성모델은 소 성이면모델을 이용하여 다축응력상태로 확장하였다. 그리고 단조 및 반복하중실험을 통하여 계산된 SM490과 SM490-TMC 반복소성모델의 재료상수는 표 2에 나타내었다.

3. 해석모델 및 조건

원형 및 H형 기둥부재의 이력거동의 특징을 명확히 하기 위해 저자가 개발한 8절점 요소를 적용한 3차원 탄소성 유 한요소해석을 수행하였다(장경호 등, 2004a; 장경호 등, 2004b; 장경호 등, 2004c). 이때 기둥부재의 해석모델 및 조건은 다음과 같다.

원형 강기둥의 형상과 제원은 그림 3에 보인바와 같이 높 이 3404 mm, 지름 900 mm이다, 표 3에 보인바와 같이 지 름-두께비를 해석 파라메터로 40, 60, 80, 100으로 변화하며 해석을 수행하였으며 적용된 강재는 SM490와 SM490-TMC 강재이다.

그림 4는 해석모델인 H형 강부재의 형상 및 제원을 보이 고 있다. 두께에 따른 TMCP강재의 거동특성을 파악하기 크 기 200×100×3.2×4.5인 박판부재와 350×350×40×40인 후판부재를 모델로 하여 해석을 수행하였다. 높이는 2000 mm이며 해석모델은 부재의 단면(박판단면, 후판단면)과 사 용된 강재(SM490-TMC, SM490)에 따라 표 4와 같이 분류

표 2. 재료상수기계적 성질

	재료상수					
강종		(MPa)		(MPa)		
SM490	0.00018	-1514.80	0.00013	-1287.58	0.75	17.2
SM490-TMC	0.00674	-1578.35	0.00640	-1531.00	0.85	12.3

그림 3. 원형 강기둥의 단면 및 치수

표 3. 해석모델의 분류(원형 강기둥)

	제원			
모델	강 재	D/t ^出]	두께(t:mm)	
SM490-D/t 40	SM490	40	22.50	
SM490-D/t 60	SM490	60	15.00	
SM490-D/t 80	SM490	80	11.25	
SM490-D/t 100	SM490	100	9.00	
SM490-TMC-D/t 40	SM490-TMC	40	22.50	
SM490-TMC-D/t 60	SM490-TMC	60	15.00	
SM490-TMC-D/t 80	SM490-TMC	80	11.25	
SM490-TMC-D/t 100	SM490-TMC	100	9.00	

외경(D): 900 mm, 높이(h): 3404 mm

하여 해석을 수행하였다.

경계조건은 기둥하부는 지반에 완전히 고정된 것으로 가정 하여 모든 자유도를 구속하였다. 기둥상부에는 실제지진을 이 상화하여 항복수평변위(융)값에 비례하여 그림 5에 보인바와 같이 단조 및 반복수평변위를 재하하였다. 이때, 항복수평변 위(융)는 단조하중 해석에 의해 계산하였다. 그리고 해석의 정도를 높이기 위하여 그림 3, 4에 보이는 바와 같이 국부좌 굴 및 응력집중이 발생하는 기둥하부의 요소를 세밀히 분할 하였다. 그리고 원형 및 H형 기둥부재의 제작시 발생하는 잔 류응력 및 잔류변형과 같은 초기부정은 고려하지 않았다.

4 해석결과 및 고찰

SM490-TMC가 적용된 기둥부재의 형상비에 따른 수치해 석을 수행하여 이력거동을 명확히 파악하였다. 또한, 유사한

그림 5 재하하중 패턴

강도를 가진 SM490 기둥부재의 해석결과와 비교하여 TMCP강재가 기둥부재의 이력거동에 미치는 영향을 명확히 파악하였다. 원형 및 H형 강기둥부재의 해석결과 및 고찰은 다음과 같다.

4.1 원형 강기둥부재

4.1.1 수평단조하중

그림 6은 단조하중 작용시 D/비에 따른 SM490, SM490-TMC 원형강기둥의 하중-변위곡선을 비교하고 있다. 지름-두 께비(D/t) 변화에 따른 최대내하력을 기준으로 비교하였다. 비교결과 D/비의 변화에 따른 SM490-TMC 원형강기둥의 최대내하력은 SM490 원형강기둥과 거의 유사한 거동을 보 이고 있다. 변형이 증가함에 따라 SM490-TMC 원형강기둥 의 내하력이 미소하게 증가하나 최대내하력 값은 D/t변화에 따라 거의 유사한 값을 나타내고 있다.

4.1.2 수평반복하중

그림 7은 반복하중을 받는 SM490 및 SM490-TMC 원형 장기둥의 해석결과인 하중-변위 이력곡선을 나타내고 있다.

표 4. 해석모델의 분류(H형 강기둥)

	제 원		
모델	강 재	H 단면의 크기	높이
SM490-L	SM490	200×100×3.2×4.5 (박판단면)	
SM490-H	SM490	350×350×40×40 (후판단면)	2 000 mm
SM490-TMC-L	SM490-TMC	200×100×3.2×4.5 (박판단면)	2,000 mm
SM490-TMC-H	SM490-TMC	350×350×40×40 (후판단면)	

11.25 mm인 원형강기둥의 경우 그림 8(b)에 보인바와 같이 -5 &에서 최대 24%의 내하력 차이를 보이고 있다. D/비가 60, 두께가 15 mm인 원형강기둥의 경우 그림 8(c)에 보이는 바와 같이 +5 &에서 최대 25%의 내하력 차이를 보이고 있 다. D/비가 40, 두께가 22.5 mm인 원형강기둥의 경우 그림

그림 8은 하중-변위 이력곡선 중 각 싸이클의 최고점을 연 결한 하중-변위 포락곡선을 D/비에 따라 비교하고 있다.

그림 8(a)는 D/비가 100, 두께가 9 mm인 원형강기둥의 하중-변위 포락곡선을 보이고 있다. 비교결과 +5 &에서 최대 22%의 내하력 차이를 보이고 있다. D/t비가 80, 두께가

8(d)에 보이는 바와 같이 +4*δ*₇에서 최대 15%의 내하력 차 이를 보이고 있다.

그림 9는 D/비에 따른 SM490 및 SM490-TMC 원형강 기둥의 에너지 소산효율을 비교하고 있다. 비교결과 모든 해 석모델에서 초기 싸이클에서는 유사한 거동을 보이나 싸이 클이 증가할수록 SM490-TMC 원형강기둥의 에너지 소산효 율이 SM490 강기둥에 비해 상대적으로 높은 값을 보이고 있으며 최대 약 16% 향상된 값을 보이고 있다.

이와 같은 비교결과는 반복하중을 받을 경우 SM490-TMC 원형강기둥이 SM490 원형강기둥에 비해 상대적으로 항상된 에너지 소산효율을 보이고 있으며 내하력도 15~25% 정도 향상됨을 알 수 있다. 그림 10은 반복하중 최고점 (+1 δ_{i} , +2 δ_{i} , +4 δ_{i} , +6 δ_{f})에서 SM490-TMC-D/t 100모델의 변형형상을 나타내고 있다. 싸이클이 증가함에 따라 교각하 부에서 국부좌굴이 점차 발생하고 있다.

4.2 H형 기둥부재

4.2.1 수평단조하중

그림 11은 단조하중 작용시 SM490, SM490-TMC H형 기둥부재의 하중-변위곡선을 비교하고 있다.

그림 11(a)는 박판 H형 기둥부재의 하중-변위곡선을 비교 하고 있다. 박판의 경우 SM490-TMC 기둥의 최대내하력이 21 kN으로 SM490 기둥부재(20 kN)에 비해 약 5% 향상되 었다. 그림 11(b)는 후판 H형 기둥의 하중-변위곡선을 비교하 고 있다. 후판인 경우 SM490-TMC 기둥의 최대내하력이 934 kN으로 SM490 기둥부재(87 4kN)에 비해 약 7% 향상됨 을 알 수 있다. 이와 같은 비교결과로부터 H형 강기둥에 단 조하중 작용시 SM490-TMC강재를 적용함으로써 5~7% 정도 의 최내내하력 향상효과를 기대할 수 있음을 알 수 있다.

4.2.2 수평반복하중

그림 12은 반복하중 작용시 해석결과인 SM490, SM490-TMC H형 기둥의 하중-변위 이력곡선을 보이고 있다. 그림 13, 14는 박판 및 후판단면 H형 기둥의 하중-변위 포락곡선 과 에너지소산효율을 나타내고 있다.

그림 14. 에너지 소산효율의 비교 (H형강기둥)

그림 12(a), (b)는 박판 H형 기둥부재의 강종에 따른 하 중-변위 이력곡선을 나타내며 그림 13(a)는 하중-변위 포락 곡선을 나타내고 있다. 비교결과 SM490, SM490-TMC H 형 기둥 모두 싸이클이 증가함에 따라 점차 내하력이 감소 하는 강도저하현상이 발생하며 SM490-TMC 기둥이 SM490 기둥에 비해 완만하게 강도저하현상이 발생하고 있다. SM490-TMC H형 기둥은 SM490 H형 기둥에 비해 -3에서 내하력이 최대 20% 향상되었다.

그림 12(c), (d)는 후판 H형 기둥부재의 강종에 따른 하 중-변위 이력곡선을 나타내며 그림 13(b)는 하중-변위 포락 곡선을 나타내고 있다. 비교결과 SM490-TMC H형 기둥은 SM490 기둥에 비해 +4 &에서 내하력이 최대 24% 향상되 었으며 강도저하현상이 상대적으로 완만하게 발생하고 있다. 그림14는 반복하중 작용시 H형 기둥부재의 에너지 소산효

5. 결 론

있다.

본 연구에서는 SM490 및 SM490-TMC 강재의 단조재하 실험 및 반복하중 실험을 수행하여 그 특징을 파악하였으며 실험결과에 기초하여 반복소성모델을 정식화하였다. 정식화 된 소성모델을 적용한 3차원 탄소성 유한요소해석을 통하여 원형 및 H형 기둥부재의 이력거동 및 변형성능을 명확히 하 였다. 해석결과의 비교를 통하여 SM490-TMC강재가 원형 및 H형 기둥부재의 성능에 미치는 영향을 명확히 하였다. 그 결과는 다음과 같다.

 단조하중 작용시 D/t비에 따른 SM490, SM490-TMC 원 형강기둥의 비교결과 변형이 증가함에 따라 SM490-TMC 원형강기둥의 내하력이 미소하게 증가하나 최대내하력은 D/t변화에 따라 거의 유사한 거동을 보인다.

- 2. 반복하중 작용시 SM490-TMC 원형강기둥의 경우 SM490 원형강기둥에 비해 D/비가 감소할수록 즉, 두께 가 증가할수록 약 15%~25% 내하력이 증가하였다. 에너 지 소산효율을 비교결과 싸이클이 증가할수록 SM490-TMC 원형 강기둥의 에너지 소산효율이 SM490 강기둥에 비해 최대 16%의 증가되었다. 이와 같은 비교결과는 반 복하중 작용시 원형강기둥에 SM490-TMC강재를 적용함 으로써 SM490 원형강기둥에 비해 내하력 및 에너지소산 효율 측면에서 항상된 내진성능을 기대할 수 있음을 보이 고 있다.
- 3. H형 강기둥부재의 경우 단조하중 작용시 SM490-TMC강 재를 적용함으로써 SM490 강재에 비해 5~7% 정도의 최 내내하력 향상효과를 기대할 수 있다.
- 4. 반복하중 작용시 H형 강기둥부재는 SM490-TMC 강재를 적용함으로써 SM490 강재에 비해 강도저하현상을 완화시 킬 수 있으며 최대 20~24% 내하력 향상과 12~13%의 에너지 소산효율의 증가효과를 기대할 수 있다.

감사의 글

이 논문은 2006년도 중앙대학교 학술연구비 지원에 의한 것임.

참고문헌

- 김덕재, 김동규, 김규석, 문태섭, 윤명호, 신일범(1994) TMCP 강재를 사용한 용접 H형강 보의 거동에 관한 연구, 한국강 구조학회논문집, 한국강구조학회. 제6권 3호, pp. 165-172.
- 김화중, 최성모, 신일범, 김동규(1993) TMCP 강재를 사용한 용 접 H-형강 보-기둥의 특성에 관한 실험적 연구, 한국강구조 학회발표대회 논문집, pp. 108-113.

- 김희진(1986) TMCP강의 개발 및 적용, 대한용접학회 논문집, 대한용접학회, 제4권 제2호.
- 방중석, 신일범, 김동규(1993) TMCP 강재를 사용한 용접 H-형 강 보-기둥의 특성에 관한 실험적 연구, **한국강구조학회 발표** 대회 논문집, pp. 114-119.
- 용환선, 김석태(1995) TMCP강의 피로, 한국강구조학회 논문집, 한국강구조학회, 제7권 제4호, pp 193-202.
- 장갑철, 장경호(2004) SM490 TMC 강재의 반복소성모델의 정 식화 유한요소해석, 2004년도 가을 한국전산구조공학회 학술 발표회 논문집, 한국전산구조공학회, pp. 84-89.
- 장갑철, 장경호, 최의홍(2005) SM490 TMC 강재를 적용한 H 형 기둥부재의 반복소성거동에 관한 연구, 한국강구조학회 학 술발표논문집, 한국강구조학회, pp. 480-485.
- 장갑철(2005) 강재의 정동적 반복소성모델의 정식화 및 해석기법 의 개발, 박사학위논문, 중앙대학교.
- 장경호, 장갑철(2004) 강재의 소성이력 구성식의 정식화와 반복 하중을 받는 원형강교각의 변형성능 평가, 대한토목학회논문 집, 대한토목학회, 제24권 제6-A호.
- 장경호, 장갑철, 이은택(2004) SM570강재의 반복소성모델의 정 식화 및 3차원 탄소성 유한요소적용에 관한 연구. 한국지진 공학회 논문집, 한국지진공학회, 제8권 제1호, pp. 59-65.
- 장경호, 장갑철, 강재훈(2004) 3차원 탄소성 유한변위해석을 이용 한 고강도(POSTEN60, POSTEN80)원형강교각의 내진성능에 관한 연구, **한국지진공학회 논문집**, 한국지진공학회, 제8권 제 5호, pp. 1-10.
- Bathe, K.J. and Bolourchi, S. (1979) Large displacement analysis threedimensional beam structures. Internat. J. Numer. Meths. Eng., Vol. 14, pp. 961-986.
- Zbib, H.M. (1993) On the Mechanics of Large Inelastic Deformation-Kinematics and Constitutive Modeling. ACTA Mechanica, Vol. 96, pp. 119-138
- Park, H.C., Jang, G.C., Chang, K.H., Kim, Y.C., and Lee, S.H. (2005) Formulation of Hysteretic Model for SM490-TMC and Application to 3-Dimensional Elastic-Plastic Finite Element Analysis.

(접수일: 2005.11.3/심사일: 2006.1.1/심사완료일: 2006.7.18)