• Title/Summary/Keyword: TLR4 pathway

Search Result 80, Processing Time 0.034 seconds

Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

  • Bahk, Young Yil;Pak, Jhang Ho
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.679-684
    • /
    • 2016
  • Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-${\kappa}B$-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

Induction of Autophagy by Paeonia lactiflora Root Extracts through Upregulation p62/SQSTM1 in RAW264.7 Cells (작약(Paeonia lactiflora) 뿌리 추출물의 대식세포에서 p62/SQSTM1 증가를 통한 자가포식 유도)

  • Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.275-281
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, PLR activated autophagy and increased p62/SQSTM1. The knockdown of p62/SQSTM1 attenuated PLR-mediated autophagy. Inhibition of TLR4 blocked PLR-mediated increase in p62/SQSTM1 level and autophagy induction. In addition, inhibition of PI3K blocked HSL-mediated increase of p62/SQSTM1. PLR increased Nrf2 level and the inhibition of TLR4 and PI3K reduced PLR-mediated increase of Nrf2. Taken together, it is believed that PLR may induce autophagy through upregulating p62/SQSTM1 via TLR4/PI3K/Nrf2 signaling pathway.

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

Nucleotide-Binding Domain and Leucine-Rich Repeat Containing Receptor (NLR) and its Signaling Pathway

  • Park, Sangwook;Gwon, Sun-Yeong;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 2013
  • Since the identification and characterization of toll-like receptors (TLR) in Drosophila, numerous scientific studies have examined the role of TLRs in host innate immunity. Recent studies have suggested a convergence of the nuclear factor kappa B (NF-${\kappa}B$) signaling and cytokine production regulated by the cytosolic elicitor known as NLRs (nucleotide-binding domain and leucine-rich repeat containing domain receptors) as a key modulator in inflammatory diseases. Among the NLRs, NOD1 and NOD2 have been intensively investigated for its role in inflammatory bowel disease (IBD). On the other hand, NLRs such as NLRP3, NLRP1, and NLRC4 (also known as IPAF) have been identified to form the inflammasome to activate downstream signaling molecules in response to pathogenic microbes. There is evidence to suggest that substantial crosstalk exists for the TLR and NLR signaling pathway in response to pathogen associated molecular pattern (PAMP). However, the substrate and the mechanistic role of NLRs are largely unknown in innate immune response. Understanding the signaling mechanisms by which NLRs recognize PAMP and other danger signals will shed light on elucidating the pathogenesis of various human inflammatory diseases such as IBD.

Immunostimulatory Activity of Hibiscus manihot Flower in Mouse Macrophages, RAW264.7 Cells

  • Geum, Na Gyeong;Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.536-541
    • /
    • 2021
  • In this study, we investigated whether Hibiscus manihot flowers (HMF) exhibits immunostimulatory activity in RAW264.7 cells. HMF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β and TNF-α in RAW264.7 cells. TLR2 and TLR4 blocked HMF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK signaling pathway reduced HMF-mediated production of immunostimulatory factors. From these results, HMF is thought to promote the production of immunostimulatory factors through activating TLR2/4/MAPK signaling in macrophages. It is believed that HMF can be developed as an agent related to immune enhancement in the future.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.

Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway

  • Xu, Xiang;Lu, Yu-Nan;Cheng, Jia-Hui;Lan, Hui-Wen;Lu, Jing-Mei;Jin, Guang-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Ma, Juan;Piao, Hu-Nan;Jin, Xuejun;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.62-70
    • /
    • 2022
  • Background: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.

Immuno-enhancing and Anti-obesity Effect of Abelmoschus manihot Root Extracts (금화규(Abelmoschus manihot) 뿌리 추출물의 면역증진 및 항비만효과)

  • Yu, Ju Hyeong;Geum, Na Gyeong;Ye, Joo Ho;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, we investigated in vitro immune-enhancing and anti-obesity activity of Abelmoschus manihot roots (AMR) in mouse macrophage RAW264.7 cells and mouse adipocytes 3T3-L1 cells. AMR increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. The inhibition of toll like receptor (TLR) 2 and 4 blocked AMR-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of mitogen-activated protein kinases (MAPKs) signaling pathway reduced AMR-mediated production of immunostimulatory factors. From these results, AMR is considered to have immune-enhancing activity through TLR2/4-mediated activation of MAPKs signaling pathway. In addition, AMR inhibited lipid accumulation and reduced the protein level such as CCAAT enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin and fatty acid binding protein 4 (FABP4) associated with lipid accumulation in 3T3-L1 cells, indicating that AMR may have anti-obesity activity. Based on these results, AMR is expected to be used as a potential functional agent for immune enhancement and anti-obesity.