• Title/Summary/Keyword: TLR4

Search Result 325, Processing Time 0.018 seconds

Clinical Outcomes of Atherectomy Plus Drug-coated Balloon Versus Drug-coated Balloon Alone in the Treatment of Femoropopliteal Artery Disease

  • Jung-Joon Cha;Jae-Hwan Lee;Young-Guk Ko;Jae-Hyung Roh;Yong-Hoon Yoon;Yong-Joon Lee;Seung-Jun Lee;Sung-Jin Hong;Chul-Min Ahn;Jung-Sun Kim;Byeong-Keuk Kim;Donghoon Choi;Myeong-Ki Hong;Yangsoo Jang
    • Korean Circulation Journal
    • /
    • v.52 no.2
    • /
    • pp.123-133
    • /
    • 2022
  • Background and Objectives: Atherectomy as a pretreatment has the potential to improve the outcomes of drug-coated balloon (DCB) treatment by reducing and modifying atherosclerotic plaques. The present study investigated the outcomes of atherectomy plus DCB (A+DCB) compared with DCB alone for the treatment of femoropopliteal artery disease. Methods: A total of 311 patients (348 limbs) underwent endovascular therapy using DCB for native femoropopliteal artery lesions at two endovascular centers. Of these, 82 limbs were treated with A+DCB and 266 limbs with DCB alone. After propensity score matching based on clinical and lesion characteristics, a total of 82 pairs was compared for immediate and mid-term outcomes. Results: For the matched study groups, the lesion length was 172.7±111.2 mm, and severe calcification was observed in 43.3%. The technical success rate was higher in the A+DCB group than in the DCB group (80.5% vs. 62.2%, p=0.015). However, the A+DCB group showed more procedure-related minor complications (37.0% vs. 13.4%, p=0.047). At 2-year follow-up, primary clinical patency (73.8% vs. 82.6%, p=0.158) and the target lesion revascularization (TLR)-free survival (84.3% vs. 88.2%, p=0.261) did not differ between the two groups. In Cox proportional hazard analysis, atherectomy showed no significant impact on the outcome of DCB treatments. Conclusions: The pretreatment with atherectomy improved technical success of DCB treatment; however, it was associated with increased minor complications. In this study, A+DCB showed no clinical benefit in terms of TLR-free survival or clinical patency compared with DCB treatment alone.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Lipoteichoic Acid Suppresses Effector T Cells Induced by Staphylococcus aureus-Pulsed Dendritic Cells

  • Son, Young Min;Song, Ki-Duk;Park, Sung-Moo;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1023-1030
    • /
    • 2013
  • Lipoteichoic acid (LTA), uniquely expressed on gram-positive bacteria, is recognized by Toll-like receptor 2 (TLR2) on not only antigen-presenting cells but also activated T cells. Therefore, it is reasonable to assume that LTA is acting on T cells. However, little is known about the effect of LTA on T-cell regulation. In the present study, we investigated the immunomodulatory effects of LTA on $CD4^+$ T cells. Effector $CD4^+$ T cells, induced after co-culture with S. aureus-pulsed dendritic cells, produced high levels of interferon-${\gamma}$, CD25, CD69, and TLRs 2 and 4. When effector $CD4^+$ T cells were treated with LTA, the expressions of the membrane-bound form of transforming growth factor (TGF)-${\beta}$ and forkhead box P3 increased. Coincidently, the proliferation of effector $CD4^+$ T cells was declined after LTA treatment. When TGF-${\beta}$ signaling was blocked by the TGF-${\beta}$ receptor 1 kinase inhibitor, LTA failed to suppress the proliferation of effector $CD4^+$ T cells. Therefore, the present results suggest that LTA suppresses the activity of effector $CD4^+$ T cells by enhancing TGF-${\beta}$ production.

Vibrio Vulnificus Induces the Inflammation of Mouse Ileal Epithelium: Involvement of Protein Kinase C and Nuclear Factor-Kappa B (회장 상피세포에서 비브리오균(Vibrio vulnificus)의 염증 유도 기작 연구: protein kinase C와 nuclear factor kappa-B의 관련성)

  • Han, Gi Yeon;Jung, Young Hyun;Jang, Kyung Ku;Choi, Sang Ho;Lee, Sei-Jung
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.664-670
    • /
    • 2014
  • In the present study, we investigate the role of V. vulnificus in promoting the inflammation of mouse ileal ephitelium and its related signaling pathways. ICR mice were infected orally with V. vulnificus ($1{\times}10^9CFU$) for 16 h as a representative model of food-borne infection. To find the major portal of entry of V. vulnificus in mouse intestine, we have measured the levels of bacterial colonization in small intestine, colon, spleen, and liver. V. vulnificus appeared to colonize in intestine and colon in the order of ileum >> jejunum> colon, but lack in the duodenum, spleen, and liver. V. vulnificus in ileum caused severe necrotizing enteritis and showed shortened villi heights accompanied by an expanded width and inflammation, compared with the control mice. V. vulnificus induced ileal epithelium inflammation by activating phosphorylation of PKC and membrane translocation of $PKC{\alpha}$. V. vulnificus induced the phosphorylation of ERK and JNK, but did not affect p38 MAPK phosphorylation. Notably, V. vulnificus stimulated the I-${\kappa}B$-dependent phosphorylation of NF-${\kappa}B$ in mouse ileal epithelium. Finally, the ileal infection of V. vulnificus resulted in a significant increase in expression of proinflammatory cytokines and Toll-like receptors, respectively, compared to the control. Collectively, our results indicate that V. vulnificus induces ileal epithelium inflammation by increasing NF-${\kappa}B$ phosphorylation via activation of PKC, ERK, and JNK, which is critical for host defense mechanism in food-borne infection by V. vulnificus.

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Dyslipidemia promotes germinal center reactions via IL-27

  • Ryu, Heeju;Chung, Yeonseok
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.371-372
    • /
    • 2018
  • Cardiovascular disease such as atherosclerosis is caused by imbalanced lipid metabolism and represents a leading cause of death worldwide. Epidemiological studies show that patients with systemic autoimmune diseases exhibit a higher incidence of atherosclerosis. Conversely, hyperlipidemia has been known to accelerate the incidence of autoimmune diseases in humans and in animal models. However, there is a considerable gap in our understanding of how atherosclerosis impacts the development of the autoimmunity in humans, and vice versa. The atherosclerosis-related autoimmune diseases include psoriasis, rheumatoid arthritis, systemic lupus erythematosus (SLE) and diabetes mellitus. By using animal models of atherosclerosis and SLE, we have recently demonstrated that hyperlipidemia significantly accelerates the development of autoantibodies, by inducing autoimmune follicular helper T ($T_{FH}$) cells. Mechanistic studies have identified that hyperlipidemia induces IL-27 production in a TLR4-dependent manner, likely via downregulating LXR expression in dendritic cells. In this case, mice lacking IL-27 do not develop enhanced antibody responses. Thus it is noted that these findings propose a mechanistic insight responsible for the tight association between cardiovascular diseases and SLE in humans.

Cellular Signaling Molecules Associated with Peptidoglycan-Induced CCL3 Up-Regulation

  • Kim, Kang-Seung;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koan-Hoi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.302-307
    • /
    • 2011
  • Peptidoglycan (PGN) is detected in inflammatory cell-rich regions of human atheromatous plaques. The present study investigated the effects of PGN on CC chemokine ligand 3 (CCL3) expression, which is elevated in the atherosclerotic arteries, and determined cellular factors involved in PGN-mediated CCL3 up-regulation in mononuclear cells, with the goal of understanding the molecular mechanisms of inflammatory responses to bacterial pathogen-associated molecular patterns in diseased arteries. Exposure of human monocytic leukemia THP-1 cells to PGN resulted in enhanced secretion of CCL3 and profound induction of the CCL3 gene transcript. Both events were abrogated by oxidized 1-palmitoyl-2-arachidonosyl-sn-phosphatidylcholine, an inhibitor of Toll-like receptors 2/4. Pharmacological inhibitors such as U0126, SP6001250, Akt inhibitor IV, rapamycin, RO318220, diphenyleneiodonium chloride, and N-acetylcysteine also significantly attenuated PGN-mediated CCL3 up-regulation. However, polymyxin B, LY294002, and SB202190 did not influence CCL3 expression. We propose that PGN contributes to enhanced CCL3 expression in atherosclerotic plaques and that Toll-like receptors (TLR2), Akt, mTOR, mitogen-activated protein kinase, and reactive oxygen species are involved in that process.

Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules

  • Piras, Vincent;Selvarajoo, Kumar;Fujikawa, Naoki;Choi, Sang-Dun;Tomita, Masaru;Giuliani, Alessandro;Tsuchiya, Masa
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.

Allergic effects of Der p 38 and Der f 38: A Comparison

  • Ji-Sook Lee
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.206-209
    • /
    • 2023
  • Asthma is a chronic and allergic inflammation in the lung, mainly caused by house dust mites (HDM). Recent studies have reported Der p 38 and Der f 38 (Dermatophagoides pteronyssinus and D. farinae, respectively) as crucial allergens of HDMs. This study investigates the different allergic effects of Der p 38 and Der f 38 in an asthma-like mouse model. Lung infiltration of neutrophils was induced by intranasal administration of Der p 38 and Der f 38, with stronger infiltration being observed after exposure to Der p 38. Intranasal and intraperitoneal administration of Der p 38 induced the infiltration of neutrophils and eosinophils in the lung, which was similar to the effect subsequent to Der f 38 administration. Although the number of mast cells was increased, no significant difference was obtained between the effects of both allergens. In TLR4 knockout BALB/c mice, Der p 38 and Der f 38 had no effect on the infiltration of neutrophils, eosinophils, and mast cells. Additionally, allergenicity induced by Der p 38 and Der f 38 in the basophils of Der p38+/Der f 38+ asthmatic subjects was similar, although Der f 38 presented stronger allergenicity in basophils of Der p38+/Der f 38+ allergic patients than Der p 38. These findings contribute to understanding the role of similar allergen components derived from different species in the pathogenesis of allergic diseases.

Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection

  • Tae Hoon Kim;Chae Won Kim;Dong Sun Oh;Hi Eun Jung;Heung Kyu Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.27.1-27.12
    • /
    • 2021
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory viral infection in infants and children. However, little is known about the contribution of monocytes to antiviral responses against RSV infection. We identified the IFN-β production of monocytes using IFN-β/YFP reporter mice. The kinetic analysis of IFN-β-producing cells in in vivo RSV-infected lung cells indicated that monocytes are recruited to the inflamed lung during the early phase of infection. These cells produced IFN-β via the myeloid differentiation factor 88-mediated pathway, rather than the TLR7- or mitochondrial antiviral signaling protein-mediated pathway. In addition, monocyte-ablated mice exhibited decreased numbers of IFN-γ-producing and RSV Ag-specific CD8+ T cells. Collectively, these data indicate that monocytes play pivotal roles in cytotoxic T-cell responses and act as type I IFN producers during RSV infection.