Browse > Article
http://dx.doi.org/10.4014/jmb.1302.02009

Lipoteichoic Acid Suppresses Effector T Cells Induced by Staphylococcus aureus-Pulsed Dendritic Cells  

Son, Young Min (Animal Science and Biotechnology Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Song, Ki-Duk (Center for Food and Bioconvergence, Seoul National University)
Park, Sung-Moo (Animal Science and Biotechnology Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Han, Seung Hyun (Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University)
Yun, Cheol-Heui (Animal Science and Biotechnology Major, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 1023-1030 More about this Journal
Abstract
Lipoteichoic acid (LTA), uniquely expressed on gram-positive bacteria, is recognized by Toll-like receptor 2 (TLR2) on not only antigen-presenting cells but also activated T cells. Therefore, it is reasonable to assume that LTA is acting on T cells. However, little is known about the effect of LTA on T-cell regulation. In the present study, we investigated the immunomodulatory effects of LTA on $CD4^+$ T cells. Effector $CD4^+$ T cells, induced after co-culture with S. aureus-pulsed dendritic cells, produced high levels of interferon-${\gamma}$, CD25, CD69, and TLRs 2 and 4. When effector $CD4^+$ T cells were treated with LTA, the expressions of the membrane-bound form of transforming growth factor (TGF)-${\beta}$ and forkhead box P3 increased. Coincidently, the proliferation of effector $CD4^+$ T cells was declined after LTA treatment. When TGF-${\beta}$ signaling was blocked by the TGF-${\beta}$ receptor 1 kinase inhibitor, LTA failed to suppress the proliferation of effector $CD4^+$ T cells. Therefore, the present results suggest that LTA suppresses the activity of effector $CD4^+$ T cells by enhancing TGF-${\beta}$ production.
Keywords
Lipoteichoic acid; immune tolerance; regulatory T cells; effector $CD4^+$ T cells; TGF-${\beta}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.   DOI   ScienceOn
2 Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511.   DOI   ScienceOn
3 Chen Q, Davidson TS, Huter EN, Shevach EM. 2009. Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival. J. Immunol. 183: 4458-4466.   DOI   ScienceOn
4 Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.   DOI   ScienceOn
5 Biswas SK, Lopez-Collazo E. 2009. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30: 475-487.   DOI   ScienceOn
6 Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. 2003. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197: 403-411.   DOI   ScienceOn
7 Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK. 2005. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J. Immunol. 175: 8051-8059.
8 Dieter K. 2007. Expression and function of toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 19: 39-45.   DOI   ScienceOn
9 Dolganiuc A, Garcia C, Kodys K, Szabo G. 2006. Distinct toll-like receptor expression in monocytes and T cells in chronic HCV infection. World J. Gastroenterol 12: 1198-1204.
10 Dziarski R, Gupta D. 2000. Role of MD-2 in TLR2- and TLR4-mediated recognition of gram-negative and gram-positive bacteria and activation of chemokine genes. J. Endotoxin Res. 6: 401-405.   DOI
11 Foster TJ. 2005. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3: 948-958.   DOI   ScienceOn
12 Gelman AE, Zhang J, Choi Y, Turka LA. 2004. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J. Immunol. 172: 6065-6073.
13 Imanishi T, Hara H, Suzuki S, Suzuki N, Akira S, Saito T. 2007. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178: 6715-6719.
14 Han SH, Kim JH, Martin M, Michalek SM, Nahm MH. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating toll-like receptor 2. Infect. Immun. 71: 5541-5548.   DOI   ScienceOn
15 Hosono M, de Boer OJ, van der Wal AC, van der Loos CM, Teeling P, Piek JJ, et al. 2003. Increased expression of T cell activation markers (CD25, CD26, CD40L, and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis 168: 73-80.   DOI   ScienceOn
16 Huff E. 1982. Lipoteichoic acid, a major a mphiphile of gram-positive bacteria that is not readily extractable. J. Bacteriol. 149: 399-402.
17 Jacinto R, Hartung T, McCall C, Li L. 2002. Lipopolysaccharideand lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J. Immunol. 168: 6136-6141.
18 Kaisho T, Akira S. 2003. Regulation of dendritic cell function through toll-like receptors. Curr. Molec. Med. 3: 759-771.   DOI   ScienceOn
19 Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. 2004. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl. Acad. Sci. USA 101: 3029-3034.   DOI   ScienceOn
20 Lawrence PK, Rokbi B, Arnaud-Barbe N, Sutten EL, Norimine J, Lahmers KK, et al. 2012. CD4 T cell antigens from Staphylococcus aureus Newman strain identified following immunization with heat-killed bacteria. Clin. Vaccine Immunol. 19: 477-489.   DOI
21 Leiba M, Cahalon L, Shimoni A, Lider O, Zanin-Zhorov A, Hecht I, et al. 2006. Halofuginone inhibits $NF-{\kappa}B$ and p38 MAPK in activated T cells. J. Leukocyte Biol. 80: 399-406.   DOI   ScienceOn
22 Mandron M, Aries M-F, Brehm RD, Tranter HS, Acharya KR, Charveron M, et al. 2006. Human dendritic cells conditioned with Staphylococcus aureus enterotoxin B promote TH2 cell polarization. J. Allergy Clin. Immunol. 117: 1141-1147.
23 Morath S, von Aulock S, Hartung T. 2005. Structure/function relationships of lipoteichoic acids. J. Endotoxin Res. 11: 348-356.   DOI
24 Liu H, Komai-Koma M, Xu D, Liew FY. 2006. Toll-like receptor 2 signaling modulates the functions of CD4+CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 103: 7048-7053.   DOI   ScienceOn
25 Lombardi V, Van Overtvelt L, Horiot S, Moingeon P. 2009. Human dendritic cells stimulated via TLR7 and/or TLR8 induce the sequential production of Il-10, IFN-gamma, and IL-17A by naive CD4+ T cells. J. Immunol. 182: 3372-3379.   DOI   ScienceOn
26 Nakamura K, Kitani A, Strober W. 2001. Cell contactdependent immunosuppression by Cd4+Cd25+regulatory T cells is mediated by cell surface-bound transforming growth factor ${\beta}$. J. Exp. Med. 194: 629-644.   DOI   ScienceOn
27 Netea MG, Sutmuller R, Hermann C, Van der Graaf CAA, Van der Meer JWM, Van Krieken JH, et al. 2004. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172: 3712-3718.
28 Poltorak A, He X, Smirnova I, Liu M-Y, Huffel CV, Du X, et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088.   DOI   ScienceOn
29 Re F, Strominger JL. 2001. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 276: 37692-37699.   DOI   ScienceOn
30 van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SAJ, et al. 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27: 660-669.   DOI   ScienceOn
31 Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. 2009. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21: 1105-1111.   DOI   ScienceOn
32 Ye Z-J, Zhou Q, Zhang J-C, Li X, Wu C, Qin S-M, et al. 2011. CD39+ Regulatory T cells suppress generation and differentiation of Th17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir. Res. 12: 77.   DOI
33 Son YM, Ahn SM, Jang MS, Moon YS, Kim SH, Cho K-K, et al. 2008. Immunomodulatory effect of resistin in human dendritic cells stimulated with lipoteichoic acid from Staphylococcus aureus. Biochem. Biophys. Res. Commun. 376: 599-604.   DOI   ScienceOn
34 Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, et al. 2006. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116: 485-494.   DOI   ScienceOn
35 Wan Y, Flavell R. 2008. $TGF-{\beta}$ and regulatory T cell in immunity and autoimmunity. J. Clin. Immunol. 28: 647-659.   DOI   ScienceOn
36 Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. 1999. Cutting edge: recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J. Immunol. 163: 1-5.
37 Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR. 2006. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J. Clin. Invest. 116: 2022-2032.   DOI   ScienceOn