전기적인 장치를 기반으로 한 테라헤르츠 송신기(Terahertz Transmitter: Tx)를 이용하여 0.34 THz의 전자기파를 발생시키는 소형 CW sub-THz 이미징 시스템을 제시하였다. Tx에 의해 발생된 0.34 THz의 전자기파는 테라 헤르츠 수신기(Terahertz Receiver: Rx)를 이용하여 샘플의 진폭(magnitude)과 위상(phase) 정보를 각각 측정하였다. 이 논문에서는 보다 좋은 이미지 해상도를 얻기 위하여 데이터 수집 시 이미지의 분해능(resolution)에 영향을 미치는 주사 스테이지(scanning stage)의 시간 지연과 스텝 거리를 변수로 두어 다양한 샘플들을 주사하여 그 결과를 측정, 비교하였다. 또한 플라스틱, 종이, 나무 등 다양한 샘플들의 이미징 측정을 통해 테라헤르츠 파의 응용 가능성을 확인하였다.
전기적인 장치를 기반으로 한 테라헤르츠 송신기(terahertz transmitter; Tx)를 이용하여 0.34 THz의 전자기파를 발생시키는 소형 CW sub-THz 이미징 시스템을 제시하였다. Tx에 의해 발생된 0.34 THz의 전자기파를 point by point 스캔방식으로 샘플에 투과시켰고, 여기서 얻어진 데이터는 테라헤르츠 수신기(terahertz receiver; Rx)를 이용하여 진폭(magnitude)과 위상(phase) 정보로 측정한 후 이를 영상화하였다. 이 논문에서는 보다 좋은 이미지 해상도를 얻기 위하여 데이터 수집 시 이미지의 분해능(resolution)에 영향을 미치는 주사 스테이지(scanning stage)의 시간지연과 스텝거리를 변수로 두어 다양한 샘플들을 주사하여 그 결과를 측정, 비교하였다. 또한 플라스틱, 종이, 나무 등 다양한 샘플들의 이미징 측정을 통해 테라헤르츠 파의 응용 가능성을 확인하였다.
전기전도도가 높은 구리선 도파로에 THz 전자기파의 결합은 THz 유선방식의 전파에 있어 테라파의 크기 및 주파수 특성을 결정짓는 중요한 요인 중의 하나이다. 본 연구에서는 직경 $480{\mu}m$, 길이 23 cm의 구리선 도파로에 테라파를 전파시켜 1 THz 주파수 범위를 가진 THz 펄스를 측정하였다. 도파로와 transmitter chip 또는 receiver chip 사이의 공극 간격을 최대 $275{\mu}m$까지 확대하여 송신부와 수신부의 결합 특성을 접촉상태와 비교 분석하였다. 실험결과 송신부의 결합민감도가 수신부보다 약 3배 이상 높게 나타났으며 수신부에서 도파로와 receiver사이의 공극을 통하여 테라파가 공기 중으로 전파됨을 알 수 있었다. 또한 구리선 도파로에 pin hole를 위치시켜 pin hole의 직경에 따른 테라파의 변화를 연구하였으며 대부분의 THz field는 구리선 표면에 분포됨을 확인할 수 있었다.
Journal of electromagnetic engineering and science
/
제10권3호
/
pp.158-165
/
2010
This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.
THz 대역 전파흡수체를 구현하기 위해 split cut wire(SCW)와 배면 도체로 구성되는 단위 셀 구조를 제안하였다. 배면이 금속으로 단락된 유전체 기판 상에 SCW가 배열된 메타소재에서 SCW의 길이와 폭을 조절하여 THz 대역에서 완전 전파흡수체(5.5~6.0 THz에서 반사손실 -20 dB 이하)의 구현이 가능하였고, 인덕턴스-커패시턴스 (L-C) 공진기 회로이론으로 이를 설명하였다. 길이가 서로 다른 두 개의 SCW를 하나의 단위 셀 안에 같이 배치함으로써 두 개의 흡수 피크를 얻을 수 있었다. SCW 간의 간격이 넓어짐에 따라 두 번째 공진주파수는 거의 변화가 없지만 첫 번째 공진주파수는 저주파로 이동하면서 반사손실 값이 현저히 감소하는 경향이 나타났다.
The terahertz wave (THz wave) is a band between infrared and microwaves and is defined as an electromagnetic wave having a frequency of 0.1 to 10 THz band. THz waves have the property of transmitting nonpolar materials, which the visible light cannot be transmitted, such as ceramics, plastics, and paper; and the photon energy is low, such as several meV. For this reason, non-destructive testing equipment based on THz imaging technology can be applied to the industrial field. Recently, THz imaging technology was applied in wide industrial fields, such as automobiles, batteries, food, medical, and security, and being actively studied. In this paper, we describe the research trends of terahertz imaging technology and experimental results. Furthermore, we summarize the recent commercialized terahertz camera. Finally, we present the research results in the field of the human security scanner system.
Journal of electromagnetic engineering and science
/
제11권1호
/
pp.42-50
/
2011
One of the important applications of THz time-domain spectroscopy (TDS) is the detection of explosive materials through identification of vibrational fingerprint spectra. Most recent THz spectroscopic measurements have been made using pellet samples, where disorder effects contribute to line broadening, which results in the merging of individual resonances into relatively broad absorption features. To address this issue, we used the technique of parallel plate waveguide (PPWG) THz-TDS to achieve sensitive characterization of three explosive materials: TNT, RDX, and HMX. The measurement method for PPWG THz-TDS used well-established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. All materials were characterized as powder layers in 112 ${\mu}m$ gaps in metal PPWG. To illustrate the PPWG THz-TDS method, we described our measurement by comparing the vibrational spectra of the materials, TNT, RDX, and HMX, applied as thin powder layers to a PPWG, or in conventional sample cell form, where all materials were placed in Teflon sample cells. The thin layer mass was estimated to be about 700 ${\mu}g$, whereas the mass in the sample cell was ~100 mg. In a laboratory environment, the absorption coefficient of an explosive material is essentially based on the mass of the material, which is given as: ${\alpha}({\omega})=[ln(I_R({\omega})/I_S({\omega}))]m$. In this paper, we show spectra of 3 different explosives from 0.2 to 2.4 THz measured using the PPWG THz-TDS.
Terahertz wave is a kind of electromagnetic radiation whose frequency lies in 0.1THz $\~$10THz range. In this paper, generation and detection characteristics of terahertz (THz) radiation by photoconductive antenna (PCA) method has been described. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer. A mode-locked Ti:Sapphire femtosecond laser beam is guided and focused onto photoconductive antennas (emitter and detector) to generate and measure THz pulses. Ultra-wide band THz radiation with frequencies between 0.1 THz and 3 THz was observed. Terahertz field amplitude variation with antenna bias voltage, pump laser power, pump laser wavelength and probe laser power was investigated. As a primary application example. a live clover leaf was imaged with the terahertz radiation.
일반적으로 전자파의 동작 주파수가 높아짐에 따라 최대 출력이 작아지고, 파동의 파장도 작아지기 때문에, 회로의 크기도 작아질 수밖에 없다. 특히, kW급 이상의 고출력 테라헤르츠파 주파수 대역의 회로를 제작하려면, ${\mu}m{\sim}mm$ 규모의 회로 크기 문제 때문에 제작에 한계점이 있다. 이러한 한계점을 극복하기 위해 본 논문에서는 회로의 지름이 2.4 cm 정도의 원통형으로, 0.1 THz~0.3 GW급의 발생원 설계 기술을 제안한다. 판드로모티브 힘이 생기는 플라즈마 항적장 가속원리와 인위적인 유전체 활용한 체렌코프방사 발생 기술 기반의 고출력 전자파 발생원의 최적화된 설계를 위해 모델링 및 전산모사를 수행하였다. 객관적인 검증 과정을 통해 회로의 크기에 제한을 덜 받도록 하는 대구경 형태의 고출력 테라헤르츠파 진공소자 제작이 용이하도록 효과적인 설계의 가이드라인을 제시하였다.
The resonance characteristics of H-shaped metamaterials, whose widths were varied while keeping the height constant, were investigated in the terahertz (THz) frequency range. The H-shaped metamaterials were numerically analyzed in two modes in which the polarization of the incident THz electric field was either parallel or perpendicular to the width of the H-shaped structure. The resonant frequency of the metamaterial changed stably in each mode, even if only the width of the H shape was changed. The resonant frequency of the metamaterial operating in the two modes increases without significant difference regardless of the polarization of the incident electromagnetic wave as the width of the H-shaped metamaterial increases. The electric field distribution and the surface current density induced in the metamaterial in the two modes were numerically analyzed by varying the structure ratio of the metamaterial. The numerical analysis clearly revealed the cause of the change in the resonance characteristics as the width of the H-shaped metamaterial changed. The efficacy of the numerical analysis was verified experimentally using the THz-TDS (time-domain spectroscopy) system. The experimental results are consistent with the simulations, clearly demonstrating the meaningfulness of the numerical analysis of the metamaterial. The analyzed resonance properties of the H-shaped metamaterial in the THz frequency range can be applied for designing THz-tunable metamaterials and improving the sensitivity of THz sensors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.