Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.2.049

Magnetic Resonance and Electromagnetic Wave Absorption of Metamaterial Absorbers Composed of Split Cut Wires in THz Frequency Band  

Ryu, Yo-Han (Department of Advanced Materials Engineering, Chungbuk National University)
Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
Abstract
Metamaterials composed of split cut wire (SCW) on grounded polyimide film substrate have been investigated for the aim of electromagnetic wave absorbers operated in THz frequency band. Reflection loss and current density distributions are numerically simulated with variations of the SCW geometries using the commercial software. The minimum reflection loss lower than -20 dB has been identified at 5.5~6.5 THz. The simulated resonance frequency and reflection loss can be explained on the basis of the circuit theory of an inductance-capacitance (L-C) resonator. Dual-band absorption can be obtained by arrangement of two SCWs of different length on the top layer of the grounded substrate, which is due to multiple magnetic resonances by scaling of SCWs. With increasing the side spacing between SCWs, a more enhanced absorption peak is observed at the first resonance frequency that is shifted to a lower frequency.
Keywords
metamaterials; absorbers; terahertz; electric properties; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).   DOI
2 H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 30 (2006).
3 W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Phys. Rev. B 75, 041102(R) (2007).
4 T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004).   DOI
5 W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).   DOI
6 N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).   DOI
7 C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, Opt. Express 18, 6598 (2010).   DOI
8 R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, PIER B 14, 407 (2009).   DOI
9 V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, Opt. Express 15, 16651 (2007).   DOI
10 H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103(R) (2008).   DOI
11 H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).   DOI
12 A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, Appl. Phys. Lett. 92, 011119 (2008).   DOI
13 N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009).   DOI
14 H. Zhou, F. Ding, Y. Jin, and S. L. He, PIER 119, 449 (2011).   DOI
15 K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, Opt. Express 20, 635 (2012).   DOI
16 Ansoft Co. web-site: "http://www.ansoft.co.kr/", Korea.
17 F. Costa and A. Monorchio, IEEE Trans. Antennas Propag. 60, 4650 (2012).   DOI
18 F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 61, 1201 (2013).   DOI