• 제목/요약/키워드: THP-1 cell

검색결과 180건 처리시간 0.026초

Screening of monocyte chemoattractant protein-1-induced chemotaxis inhibitors from medicinal herbs

  • Lee, Seung-Woong;Kwon, Oh-Eok;Lee, Jeong-Hyun;Kim, Young-Ho;Rho, Mun-Chual;Lee, Hyun-Sun;Kim, Young-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.382.1-382.1
    • /
    • 2002
  • Blood monocytes are the precursors for the lipid-laden foam cells of early atherosclerotic lesions. Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine. and chemokine receptor 2 (CCR2) playa crucial role in the recruitment of monocytes to the vascular lesion. Using the human monocyte THP-1 cell line. we investigated the inhibitory effects of methanol extracts of 127 medicinal herbs on MCP-1-induced chemotaxis. (omitted)

  • PDF

Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes

  • Hong, Yi-Fan;Lee, Yoon-Doo;Park, Jae-Yeon;Kim, Seongjae;Lee, Youn-Woo;Jeon, Boram;Jagdish, Deepa;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1198-1205
    • /
    • 2016
  • Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heat-killed W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

결핵균 단백항원 자극에 의한 대식세포의 TNF-${\alpha}$ 및 IL-6 생성과 ERK 활성화 (Production of TNF-${\alpha}$ and IL-6 in Macrophages by Mycobacterial Protein Antigens)

  • 안혜정;조상래;백태현;이정림;최인홍
    • IMMUNE NETWORK
    • /
    • 제7권1호
    • /
    • pp.26-30
    • /
    • 2007
  • Background: Mycobacterial antigens released as PIM, LM, LAM, lipoproteins and other cellular factors may contribute to macrophage and dendritic cell activation through pattern recognition receptors such as TLRs. In this study, we assessed cytokine production and ERK activation with stimulation of several major mycobacterial antigens. Methods: Purified mycobacterial antigens (10, 22, 30, 38kDa) and recombinant antigens (6, 16, 19, 38kDa, Ag85A antigen) were studied. The production of cytokines (TNF-${\alpha}$, IL-12, IL-6) was measured by ELISA. The ERK activation was detected by western blotting. The expression of TLR2 or TLR4 was measured by flow cytometry. Results: Among purified antigens only 30kDa antigen induced production of IL-6 or TNF-${\alpha}$ in THP-1 macrophage cells. When THP-1 macrophage cells were treated with 30kDa antigen, phosphorylation of ERK was detected. ERK activation also occurred in TLR2 transfectant HEK293 cells with 30kDa antigen stimulation. Conclusion: 30kDa antigen is one of the major mycobacterial antigens inducing cytokine production and MAP kinases phosphorylation in macrophages.

Anti-inflammatory Effect of LFR on LPS-stimulated THP-1 Cells

  • ;;;;정승기
    • 대한한방내과학회지
    • /
    • 제30권2호
    • /
    • pp.388-398
    • /
    • 2009
  • Background and Objective: Luffae Fructus Retinervus (LFR) is used for investigating symptoms of inflammation. We have evaluated the anti-inflammatory effect of LFR by analyzing the expression of pro-inflammatory cytokines. Materials and Methods : We differentiated THP-l cells into macrophage-like cells by treatment with PMA. Inflammation was induced by treatment with LPS and PMA. We determined the safe concentration of LFR by using the MTS and MTT assays and using PD 98059 as a negative control for comparison of the anti-inflammatory effect of LFR. Results : The MTS and MTT analysis showed that the cell survival rate was >80% within the LFR concentration range of 10-100 ng/ml and began to decrease to >80% at 1 ${\mu}g/ml$. By RT-PCR analysis, the gene expression of TNF-${\alpha}$, IL-8, TGF-${\beta}$, IL-6, IL-${\beta}$1, and IL-10 levels were down-regulated when monocyte-derived macrophages were treated with concentrations of LFR between 10 ng/mL and 100 ng/mL. Conclusion : We conclude that LFR exerts an anti-inflammatory effect by inhibiting the expression of pro-inflammatory activity. The results suggest a promising way to treat general inflammatory diseases.

  • PDF

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

Antioxidant and Anti-inflammatory Activities of Allium victorialis subsp. platyphyllum Extracts

  • Lee, Je-Hyuk;Choi, Soo-Im;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.796-801
    • /
    • 2007
  • This study was conducted to investigate antioxidant activity and anti-immunological inflammatory effect of Allium victorialis subsp. platyphyllum extracts (AVPEs). Antioxidant activities of AVPEs were determined by free radical scavenging assay and reducing power test. Leaf-part extract had comparatively better antioxidant activity than other-part extracts. Antioxidant activity of extracts had protective effect for human umbilical vein endothelial cells (HUVECs) against superoxide anions secreted from activated neutrophils. Also, we observed AVPEs had inhibitory effects on the adherence of monocytic THP-1 to HUVEC monolayer to the basal level. Inhibitory effect on cell adhesion was caused by suppression of tumor necrosis factor-${\alpha}\;(TNF-{\alpha})-upregulated$ expression of vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin in HUVECs. From these results, we expect to support the evidence of anti-immunological inflammatory effects of Allium victorialis subsp. platyphyllum (AVP) as a Korean traditional pharmaceutical.

Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection

  • Podder, Biswajit;Jang, Woong Sik;Nam, Kung-Woo;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.738-744
    • /
    • 2015
  • Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection.

댓잎 추출물이 구강미생물에 미치는 항산화 및 항균 효과 (Antioxidant and antibacterial effect of bamboo leaves extract on oral bacteria)

  • 황혜정;김도경;강경희
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.653-657
    • /
    • 2022
  • 구강 질환은 전 세계적으로 심각한 건강 및 경제적 부담을 야기하여 사람들의 삶의 질을 크게 저하시킨다. 대표 구강질환인 치아우식증은 S. mutans에 의해 발생한다. 또한, 구강 병원성 미생물에는 면역 반응이 일어나면서 다양한 구강 질환을 유발할 수 있는 지질다당류(lipopolysaccharide, LPS)가 함유되어 있다. 본 연구의 목적은 구강 질환을 조절하기 위해서 대나무 잎 추출물(BLE)의 항산화 및 항균 효과를 조사하는 것이다. THP-1, oral fibroblasts, S mutans 배양액에 댓잎 추출물을 0-8% 농도별로 처리하여 실험을 진행하였다. 그 결과 단핵세포주와 구강섬유아세포에서 BLE 농도에 따른 항산화 효과를 확인하였다. 또한, BLE 농도에 따른 S. mutans의 항균효과를 입증하였다. 따라서 BLE가 구강질환의 예방 또는 치료에 사용될 수 있음을 시사한다.

혈관내피세포 탈착에 미치는 melatonin의 병리학적 영향 (Pathological Effect of Melatonin on Vascular Endothelial Cell Detachment)

  • 서정화;김성현;안선영;정은실;조진구;박헌용
    • 생명과학회지
    • /
    • 제20권6호
    • /
    • pp.914-921
    • /
    • 2010
  • 항산화 기능과 면역 억제 기능을 갖는 것으로 알려진 melatonin이 혈관 내피층에서는 어떤 기능을 갖는지 알기 위한 일련의 실험을 수행하였다. 본 연구의 실험 결과, 혈관기능과 관련된 혈관내피세포의 성장, 사멸, 이동에 melatonin은 특이적인 효과를 나타내지 않았고, 백혈구의 혈관내피세포 부착과 백혈구 동종간의 응집에도 melatonin의 역할이 관찰되지 않았다. 이와는 대조적으로 melatonin은 PP2A를 통해 eNOS의 활성을 억제하여 산화질소의 양을 감소시키고, 이로 인해 혈관내피세포의 탈착이 유발되는 효과가 있음을 확인할 수 있었다. 종합해보면, 혈액 내 고농도의 melatonin은 PP2A 및 eNOS의 활성을 변화시켜 혈관내피세포의 탈착을 상승시킴으로써 혈관내에서 발생할 수 있는 혈전 형성에 의한 병리적 현상을 유발할 수 있다.

Trametes cubensis 버섯 추출물이 소의 대동맥 내피세포의 혈관 기능에 미치는 효능 (Effect of Trametes cubensis Extract on Vascular Function of Bovine Aortic Endothelial Cells)

  • 장수정;이동형;김성환;박헌용
    • 한국균학회지
    • /
    • 제48권1호
    • /
    • pp.1-13
    • /
    • 2020
  • 버섯은 예로부터 암과 염증 질환의 약재로써 많이 사용되어왔다. Trametes cubensis 버섯종은 현재까지 많은 연구가 이루어지지 않았고, 형태학적 특성만 알려져 있고 효능에 관한 연구 보고가 미흡한 실정이다. 따라서 본 연구에서는 T. cubensis 균사체 추출물(Trametes cubensis extract, TCE)의 혈관생리학적 효능을 알아보기 위해 세포와 분자수준에서의 연구를 수행하였다. 먼저 TCE를 처리하였을 때, 세포 독성은 없었고 세포성장을 촉진시켰다. 또한 세포이동이 TCE에 의해 증가하는 것을 확인하였다. 다음으로 LPS (Lipopolysaccharide)에 의해 유도된 THP-1 세포의 내피세포 부착이 TCE에 의해 억제되는 것을 확인하였다. 또한 세포신호전달 경로 분석을 한 결과, TCE에 의해 활성산소가 증가하였으며, Akt억제를 통하여 p38 MAPK가 활성화되었다. 그리고 TCE가 촉발하는 세포성장, 세포이동, 단핵구 부착 등은 p38 MAPK (mitogen-activated protein kinase)에 의해 조절되었으며, 활성산소와는 관련이 없었다. 결론적으로, TCE는 세포성장, 세포이동, 단핵구 부착을 조절하였으며, 이는 TCE가 동맥경화와 같은 심혈관계 질환의 예방 및 치료제 혹은 혈관기능개선제로 개발될 가능성이 있음을 암시한다.