• Title/Summary/Keyword: THC concentration

Search Result 55, Processing Time 0.021 seconds

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

The Analysis of Time Series of SO2 Concentration and the Control Factor in An Urban Area of Yongsan-gu, Seoul (서울시 용산구 지역에 이산화황 농도의 시계열 변동과 영향인자 분석)

  • Kim, Bo-Won;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.543-553
    • /
    • 2014
  • The environmental behavior of $SO_2$ was investigated in terms of the factors affecting the temporal variabilities by analyzing the data sets obtained from the Yongsan district in Seoul from 2004 till 2013. To this end, the relationship between $SO_2$ and relevant parameters including particulate matters (such as $PM_{2.5}$, $PM_{10}$, and TSP (total suspended particulates)) and gaseous components ($CH_4$, CO, THC (total hydrocarbon), NMHC (non-methane hydrocarbon), NO, $NO_2$, NOx, and $O_3$) was investigated in several aspects. Over a decade, the annual mean concentrations of $SO_2$ varied in the range of $4.36-5.86nmole\;mole^{-1}$ (min-max) which was about five times lower than the regulation guideline set for the air quality management in Korea. In fact, this pattern greatly contrasts with some other air pollutants of which concentrations exceeded their guideline values significantly. According to our analysis, $SO_2$ was strongly correlated to the temperature and other relevant parameters. The overall results of this study confirm that the administrative regulation of $SO_2$ levels has been made effectively relative to other airborne pollutants.

Effect of Ferrous Ion on the Formation of Exotoxin A from Pseudomonas sp. PY002 and Cloning of it's Gene (Pseudomonas sp. PY002에서 Exotoxin A의 생성에 미치는 철 이온의 영향과 Exotoxin A 유전자의 클로닝)

  • Choi, Sun-Ah;Kim, Ho-Sang;Choi, Ji-Young;Kang, Jeong-Suk;Kim, Chun-Sung;Kim, Duck-Lae;Kim, Young-Ju;Yeo, Myeong-Gu;Park, Yeol
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • By SDS-polyacrylamide gel elcctrophoresis (SDS-PAGE) and immunoblot analysis that a protein with 66,000 daltons in size was recognized by P. aeruginosa anti-exotoxin A from P. sp. PY002. The yields of exotoxin A in P. sp. PY002 culture were influenced by the concentration of iron in the culture media. Increasing of the exotoxin A production and siderophore production was made slight increasing in the MKB medium. On the other hand, to clone the gene encoding the exoloxin A genomic library of P. sp. PY002 was constructed in pBluescript SK(+). From this library a exotoxin A homologous gene was isolated by immunological hybridization method using P. aemginosa anti-exoloxin A as a probe. Two putative clones were isolated and designated pETA23 and pETA42. Thc restriction analysis ol pETA42 demonstrated that thc 1760 bp insert contained one NcoI, PvuII, SstI, Kpnl and EcoRI site and three SmaI and HaeD sites.

  • PDF

Determination of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in human urine by solid-phase extraction and GC/MS (고체상 추출과 GC/MS를 이용한 소변 중 대마 대사체 (THCCOOH) 분석)

  • Cheong, Jae Chul;Kim, Jin Young;In, Moon Kyo;Cheong, Won Jo
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.441-448
    • /
    • 2006
  • 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THCCOOH) is the major metabolite of tetrahydrocannabinol (THC) which is the primary psychoactive component of marijuana. It is also the target analyte for the discrimination marijuana use. A method using solid-phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) was developed for the determination of THCCOOH in human urine. Urine samples (3 mL) were extracted by SPE column with a cation exchange cartridge after basic hydrolysis. The eluents were then evaporated, derivatized, and injected into the GC/MS. The limits of detection (LOD) and quantitation (LOQ) were 0.4 and 1.2 ng/mL, respectively. The response was linear with a correlation coefficient of 0.999 within the concentration range of 1.2 (LLE 1.3)~50.0 ng/mL. The precision and accuracy were stable within 1.20% and the recovery was 83.6~90.7%. The recovery of SPE method was lower than that of liquid-liquid extraction (LLE), but there were no apparent differences in LOD, LOQ, precision and accuracy between the two methods. While SPE method is used as a very effective and rapid procedure for sample pretreatment, and clean extracts, LLE method was not suitable for the extraction procedure of THCCOOH in urine. The applicability of the method was proven by analyzing a urine samples from a marijuana abusers.

Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine (디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향)

  • Lee, Sun-Youp;Chang, Jae-Hoon;Lee, Yong-Gyu;Oh, Seung-Mook;Kim, Yong-Rae;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

An Experimental Study on the Combustion and Emission Characteristics of Blends of GTL / Biodiesel in Diesel Engine (GTL/바이오디젤 혼합 연료의 연소 및 배기배출물 특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.39-45
    • /
    • 2009
  • An experimental research with 2.0 liter 4-cylinder turbocharged diesel engine was carried out to investigate the combustion and emission characteristics for various alternative fuels. The conventional diesel fuel, neat GTL, blends of 80% of GTL and 20% of biodiesel derived from waste cooking oil are utilized without any modification of engine hardware and ECU data. For GTL and blends of GTL/biodiesel fuel, the ignition delay decreased at the same operating conditions, and overall combustion duration increased slightly. Also, the peak cylinder pressure increased for blends of GTL/biodiesel compared to diesel and GTL fuel. THC and CO emissions with blends of GTL/biodiesel compared to other fuels decreased for the low and middle load conditions. But NOx emission increased due to oxygen content in biodiesel. The number concentrations of PM are higher for blends of GTL/biodiesel than other test fuels in the nucleation mode, while it had an opposite tendency in the accumulation mode, which implies more reduction of PM for blends of GTL/biodiesel on the base of mass concentration.

Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine (RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구)

  • Park, J.S.;Ha, D.H.;Yeum, J.K.;Ha, J.Y.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

On-road Investigation of PM Emissions of Diesel Aftertreatment Technologies (DPF, Urea-SCR) (차량 추적 실험을 통하여 디젤 후처리 장치가 입자상 물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.92-99
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the car chasing experiment of diesel bus equipped with aftertreatment system. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the diesel bus were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. The total PM number emission from diesel bus equipped with DPF was 10 orders of magnitude lower compared to those emitted from base diesel bus. And the total PM number emission from diesel bus equipped with SCR was comparable to the particle emission from base diesel bus.

A Study on Collection Efficiency And Economy of Total Hydrocarbons in Accordance with Time Changes at Activated Carbon Collection Facility (활성탄집진시설의 시간변화에 따른 총탄화수소의 집진효율성 및 경제성에 관한 연구)

  • Kim, Seong Jung;Han, Dae Hee;Woo, In Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.231-236
    • /
    • 2014
  • In this study, the changes in collection efficiencies due to the time changes of activated carbons were ascertained, and in order to identify the magnitude of adsorption, the before-use and after-use iodine adsorption values were analyzed. In addition, as a result of examining the characteristics of continuous process and non-continuous process and as a result of investigating whether the emission standards would be maintained, the continuous process and printing facilities were seen as not being able to maintain the emission standards. Also were found, in the case of non-continuous process,-taking into consideration the special nature of the job -for 4${\o}$ palletized charcoal, a collection efficiency near 50% was shown even after 96 hours. Also, when the inlet concentration was about 300ppm, it is thought that the emission standards would be maintained if the activated carbons are replaced within at least 96 hours in the case of 4${\o}$ palletized charcoal and the use was deemed pointless in the case of carbon. The results of this study are expected to provide assistance in selecting replacement periods for activated carbons and in selecting absorbents at the project sites, and are expected to be of significant help in the selection of precipitators that can collect total hydrocarbons for compliance of the emission standards.