• Title/Summary/Keyword: TFT substrate

Search Result 210, Processing Time 0.031 seconds

Electrical properties of poly-Si TFT by crystallization method for embedded TFT memory application (임베다드 TFT 메모리 적용을 위한 결정화 방법에 따른 전기적 특성평가)

  • You, Hee-Wook;Cbo, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.356-356
    • /
    • 2010
  • In this paper, Poly silicon thin-film transistors (poly-Si TFTs) with employed the SPC (Solid phase crystallization) and ELA (Excimer laser annealing) methods on glass panel substrate are fabricated to investigate the electrical poperies. Poly-Si TFTs have recess-channel structure with formated source/drain regions by LPCVD n+ poly Si in low $650^{\circ}C$ temperature. the ELA-TFT show higher on/off current ratio and subthreshold swing than a-Si and SPC TFT that therefore, these results showed that the ELA-TFT might be beneficial for practical embedded TFT memory device application.

  • PDF

Plastic Substrate for Flexible TFT LCD

  • Hwang, Hee-Nam;Choi, Jae-Moon;Yeom, Eun-Hee;Park, Yong-Ho;Kim, Lee-Ju;You, Ho-Young;Lee, Ki-Ho;Kim, In-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1406-1408
    • /
    • 2006
  • Plastic substrate for flexible TFT LCD is developed. The gas barrier, optical properties and conductivity in the substrate is improved through depositing silicon oxide/nitride layer and ITO layer, coating polymer layer on plastic film by sputtering process and wet coating process. The whole production process of the plastic substrate is guaranteed the productivity by using roll to roll process.

  • PDF

Characteristics of a-IGZO TFT by the material of substrate and temperature (Substrate 물질에 따른 a-IGZO TFT의 온도 특성)

  • Lee, Myeong-Eon;Jeong, Han-Wook;Park, Hyun-Ho;Choi, Byung-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.148-148
    • /
    • 2010
  • Measuring the a-IGZO TFTs with various temperatures was found to induce a threshold voltage shift and a change of the subthreshold gate voltage swing. Characteristic change is dependant on a material of the substrate at the temperature from $20^{\circ}C$ to $100^{\circ}C$. The threshold voltage was shifted to the left from -2.7V to -61V on SiO2/galss. But, as the temperature increases form $20^{\circ}C$ to $100^{\circ}C$. the threshold voltage was shifted to the right from 0.85V to 2.45V.

  • PDF

Design of a Large Magnetron Sputtering System for TFT LCD and Investigation of Sputtered AI Film Properties (TFT LCD 제조용 대면적 Magnetron Sputtering 장치 설계와 Al 성장막 특성 조사)

  • 유운종
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.480-485
    • /
    • 1993
  • Factros considered building the magnetron sputtering system for TFT LCD (thin film transistor liquid crystal display0 metallization were thin film thichnes uniformity, temperature uniformity and the pressure gradient of sputtering gas flow in vacuum chamber, base pressure, and the stability fo the carrier moving . The system was consisted of a deposition chamber, a pre-heating chamber, a RF-precleaning chamber and a load/unload lock chamber. The system was designed to handle a substrate with dimension of 400$\times$400mm. The temperautre uniformity of a heater table developed showed $250 ^{\circ}C\pm$5% accuracyon the substrate glass. A base pressure of 1.8 $\times$10-7 torr was obtained after 24 hours pumping with a cryo pump. After an aluminum target was installed in a sputtering source and the film wa sdeposited on the glass, the uniformity, reflectivity and sheet resistance of the deposited film were measured.

  • PDF

The Simplified LDD Process of LTPS TFT on PI Substrate

  • Hu, Guo-Ren;Kung, Bo-Cheng;He, King-Yuan;Cheng, Chi-Hong;Huang, Yeh-Shih;Liu, Chan-Jui;Tsai, Cheng-Ju;Huang, Jung-Jie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.641-644
    • /
    • 2008
  • Traditional LTPS TFT needs additional LDD process to decrease leakage current. However the fabrication process is no suitable for PI substrate. Additional laser multi-irradiation will damage the poly-Si to cause the TFT electrical degrade. Therefore we propose the simplified process to activate the $N^+$ and $N^-$ at the same time.

  • PDF

Analysis of MICC, ELA TFT performance transition according to substrate temperature and gate bias stress time variation (온도 변화 및 Gate bias stress time에 따른 MICC, ELA TFT성능 변화 비교 분석)

  • Yi, Seung-Ho;Lee, Won-Baek;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.368-368
    • /
    • 2010
  • Using TFTs crystallized by MICC and ELA, electron mobility and threshold voltage were measured according to various substrate temperature from $-40^{\circ}C$ to $100^{\circ}C$. Basic curve, $V_G-I_D$, is also measured under various stress time from 1s to 10000s. Consequently, due to the passivation effect and number of grains, mobility of MICC is varied in the range of -8% ~ 7.6%, while that of ELA is varied from -11.04% ~ 13.25%. Also, since $V_G-I_D$ curve is dominantly affected by grain size, active layer interface, the graph remained steady under the various gate bias stress time from 1s to 10000s. This proves the point that MICC can be alternative technic to ELA.

  • PDF

The thermal annealing effect on electrical performances of a-Si:H TFT fabricated on a metal foil substrate

  • Han, Chang-Wook;Nam, Woo-Jin;Kim, Chang-Dong;Kim, Ki-Yong;Kang, In-Byeong;Chung, In-Jae;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.745-748
    • /
    • 2007
  • Hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) were fabricated on a flexible metal substrate at $150\;^{\circ}C$. To increase the stability of the flexible a-Si:H TFTs, they were thermally annealed at $230\;^{\circ}C$. The field effect mobility was reduced because of the strain in a- Si:H TFT under thermal annealing.

  • PDF

Improvement of the Electrical Characteristics of a Polysilicon TFT Using Buffered Oxide Etch Cleaning (Buffered Oxide Etch 세정에 의한 다결정 실리콘 TFT의 전기적 특성 개선)

  • 남영묵;배성찬;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.31-36
    • /
    • 2004
  • we developed a technique to manufacture more reliable polycrystalline silicon TFT-LCDs using UV cleaning and buffered oxide etch(BOE) cleaning which remove the native oxide of the silicon surface before laser annealing. To investigate the effects of pre-treatments on the surface roughness of polycrystalline silicon, we measured atomic force microscopy(AFM). Also the electrical characteristics of polysilicon TFTs, breakdown characteristic and switching Performance, were tested for various pre-treatment conditions and several locations in large glass substrate.

Dependency of Oxygen Partial Pressure of ITO Films for Electrode of Oxide-based Thin-Film Transistor (산화물기반 박막트랜지스터 전극용 ITO박막의 제작시 투입 산소 분압 의존성)

  • Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.82-86
    • /
    • 2021
  • In this study, we investigated the oxygen partial pressure effect of ITO films for electrodes of oxide-based Thin-Film Transistor (TFT). Firstly, we deposited single ITO films on the glass substrate at room temperature. ITO films were prepared at the various partial pressures of oxygen gas 0-7.4% (O2/(Ar+O2)). As increasing oxygen on the process of film deposition, electrical properties were improved and optical transmittance increased in the visible light range (300-800 nm). For the electrode of TFT, we fabricated a TFT device (W/L=1000/200 ㎛) with ITO films as the source and drain electrode on the silicon wafer. Except for the TFT device combined with ITO film prepared at the oxygen partial pressure ratio of 7.4%, We confirmed that TFT devices with ITO films via FTS system operated as a driving device at threshold voltage (Vth) of 4V.

Electrical characteristics of Schottky source/drain p-MOSFET on SPC-TFT substrate

  • Oh, Jun-Seok;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.353-353
    • /
    • 2010
  • 본 논문에서는 소스와 드레인의 형성에 있어서 implantation 이 아닌 silicide를 형성시켜서 최고온도 $500^{\circ}C$가 넘지않는 저온공정을 실현하였고, silicon-on-insulator (SOI) 기판이 아닌 solid phase crystallization (SPC) 결정화 방법을 이용하여 결정화 시킨 SPC-TFT 기판을 사용하였다. Silicide 의 형성은 pt를 증착하여 furnace에서 열처리를 실시하여 형성하였다.

  • PDF