• Title/Summary/Keyword: TFT Array

Search Result 86, Processing Time 0.026 seconds

AMOLED Panel Using Transparent Bottom Gate IGZO TFT (Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작)

  • Cho, D.H.;Yang, S.H.;Byun, C.W.;Shin, J.H.;Lee, J.I.;Park, E.S.;Kwon, O.S.;Hwang, C.S.;Chu, H.Y.;Cho, K.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

Circuit Integration Technology of Low-Temperature Poly-Si TFT LCDs

  • Motai, Tomonobu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.75-80
    • /
    • 2004
  • By the SOG (System-on-Glass) technology with excimer laser anneal process, the number of IC chips and the area of the mounted IC chips on the printed circuit board are reduced. In new circuit integrations on the glass substrate, we have developed D/A converter including the new capacitor array, amplifier comprising the original comparators and new display device with capturing images by integrated sensor into a pixel. This paper discusses the application of circuit integration of low-temperature poly-Si.

  • PDF

Viewing angle improvement of TN mode by HD layer inside LC cell and a compensation film

  • Hong, Hyung-Ki;Lee, Jong-Hwae;Yoon, Sung-Whe
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.311-314
    • /
    • 2003
  • Holographic diffuser(HD) layer was demonstrated to be located inside LC cell for a transmissive LCD of TFT-array on Color Filter structure. Master pattern of this layer was generated by holographic method and this pattern was replicated by the stamping of the master pattern on UV resin. Combined with a compensation film, TN-mode LCD with this layer showed improved viewing angle characteristics, especially along the up-down direction.

  • PDF

Twisted Nematic LC Modulator for TFT Array Inspection

  • Bae, B.S.;Park, D.H.;Lee, H.K.;Lee, S.E.;Kim, S.H.;Jeong, D.H.;Rho, B.G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.290-292
    • /
    • 2007
  • A twisted nematic type liquid crystal electro-optic modulator (TN-LC modulator) was developed. The modulator used single polarizer and the reflection on-off ratio was maximized by optimization of twist angle and retardation of liquid crystal cell. The TNLC modulator shows better sensitivity and response time than conventional liquid crystal modulator.

  • PDF

Remote Phosphor with Array of Blue Light-emitting Diodes on Board Used in Liquid-crystal Backlight Module

  • Huang, Hsin-Tao;Tsai, Chuang-Chuang;Huang, Yi-Pai;Lin, Jeremy;Chang, Wen-Chi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.79-82
    • /
    • 2009
  • This work presents a novel lighting technology based on a YAG:$Ce^{3+}$ phosphor converter with micro line lenticular structure, to accompany an array of bare LED chips on a board. This technology is especially effective in TFT-LCD backlight applications as it offers the advantages of high light radiation efficiency, low color deviation, uniform luminance distribution and compact backlight thickness. Additionally, the proposed configuration is low-cost, can be manufactured quickly, and can be mass-produced economically.

  • PDF

Diffraction Properties from Periodic Slot Array in the Upper Wall of Parallel Plate Waveguide (평행평판 도파관의 윗면에 위치한 주기적인 슬롯 배열에 의한 전자파의 회절특성)

  • Park Jin-Taek;Hong Jae-Pyo;Ko Ji-Whan;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.311-318
    • /
    • 2005
  • Periodically perforated slot structure in the upper wall of the parallel plate waveguide is analyzed with main interest focusing on the diffraction Properties. The Periodic slot array is of infinite extent in one direction and of finite extent in the other direction. Various numerical results for reflection from the slotted section and transmission beyond the slotted section, and the radiation through the slotted section into the upper half space are presented with the height of feeding parallel plate waveguide, single slot size, and the periodicity between slots as parameters. This study is thought to be helpful to the design of the ventilation hole in the TFT-LCD and PDP.

A prototype active-matrix field emission display with poly-Si field emitter arrarys and thin-film transistors

  • Song, Yoon-Ho;Lee, Jin-Ho;Kang, Seung-Youl;Park, Sng-Yool;Suh, Kyung-Soo;Park, Mun-Yang;Cho, Kyoung-Ik
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) with 25$\times$25 pixels in which polycrystalline silicon fie이 emitter array (poly-Si FEA) and thin-film transistor (TFT) were monolityically intergrated on an insulating substrate. The FEAs showed relatively large electron emissions above at a gate voltage of 50 V, and the TFTs were designed to have low off-stage currents even though at high drain voltages. The intergrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in improvement in the emission stability and reliability along with a low-voltage control of field emission below 25V. With the prototype AMFED we have displayed character patterns by low-boltage pertipheral circuits of 15 V in a high vacuum chamber.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Implement of Intelligent Head-Up Display for Vehicle (차량용 지능형 Head-Up Display의 적용 실험)

  • Son, Hui-Bae;Ban, Hyeong-Jin;Yang, Kwun;Rhee, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.400-405
    • /
    • 2010
  • This paper deals with implementation of intelligent head up display for vehicle safety system. The Implanted new intelligent transport system offer the potential for improved vehicle to driver communication. The most commonly viewed information in a vehicle is from the Head up display, where speed, tachometer, engine RPM, navigation, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to head up display system. Finally, In this paper, we analyze intelligent head up display system for vehicle of driver safety.

Voltage Feedback AMOLED Display Driving Circuit for Driving TFT Deviation Compensation (구동 TFT 편차 보상을 위한 전압 피드백 AMOLED 디스플레이 구동 회로)

  • Ki Sung Sohn;Yong Soo Cho;Sang Hee Son
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.161-165
    • /
    • 2023
  • This paper designed a voltage feedback driving circuit to compensate for the characteristic deviation of the Active Matrix Organic Light Emitting Diode driving Thin Film Transistor. This paper describes a stable and fast circuit by applying charge sharing and polar stabilization methods. A 12-inch Organic Light Emitting Diode with a Double Wide Ultra eXtended Graphics Array resolution creates a screen distortion problem for line parasitism, and charge sharing and polar stabilization structures were applied to solve the problem. By applying Charge Sharing, all data lines are shorted at the same time and quickly positioned as the average voltage to advance the compensated change time of the gate voltage in the next operation period. A buffer circuit and a current pass circuit were added to lower the Amplifier resistance connected to the line as a polar stabilization method. The advantage of suppressing the Ringing of the driving Thin Film Transistor can be obtained by increasing the stability. As a result, a circuit was designed to supply a stable current to the Organic Light Emitting Diode even if the characteristic deviation of the driving Thin Film Transistor occurs.

  • PDF