• Title/Summary/Keyword: TENSILE BUTT-JOINT TEST

Search Result 30, Processing Time 0.028 seconds

Residual Stress Prediction in Multi-layer Butt Weld Using Crack Compliance Method (컴플라이언스법에 의한 다층 맞대기 이음의 잔류응력 추정)

  • Kim, Yooil;Lee, Jang Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.74-79
    • /
    • 2012
  • It depends on the joint configuration, dimensions and constraints of the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of welded joint in order to prevent excessively long life caused by compressive residual stress. In this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial term. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface is positive valued, however, it turned into the negative value as soon as it passed through 2 or 3 mm of the depth.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Effect of $CO_2$ Welding Conditions on Property of Strength in Welded Joint of SPC Steel (SPC 용접부의 강도특성에 미치는 $CO_2$ 용접조건의 영향)

  • Song Jun-Hee;Choi Jun-Yong;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.22-26
    • /
    • 2006
  • It is necessary to investigate the welding performance and fracture resistance of welding part in structure. This study presented a most suitable condition of welding process for butt and lap joints by $CO_2$ arc welding which is widely used in the vehicle structure. Also it was conducted to tensile and fatigue test under various welding conditions. For butt and lap joints, the best conditions of welding voltage and current were 30V and 320A, respectively, in 3.2 and 4.5 mm thick steel plate. Under this condition it could be taken the highest tensile strength and fatigue strength, and a good bead appearance.

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

A Study on Characteristic of Fracture in Lap Joint Welded STS429L (STS429L 겹침 용접부의 파단 특성에 관한 연구)

  • Choi, Dong-Soon;Kim, Jae-Seong;Kim, Hyun-Jae;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • Recently, a demand of ferritic STS is increasing rapidly in automobile exhaust system. Exhaust manifolds are the part nearest to the engine so that the material is exposed to high temperature exhaust gas. Excellent heat resistant properties, especially high temperature strength, thermal fatigue resistance and high corrosion resistance are necessary for these parts. STS429L contains 15 weight percent of Cr and low Mo, so has good price competitive. And it has excellent high temperature strength and corrosion resistance, so receives attentions as material that applying to exhaust manifold. In tensile test of lap joint welded STS 429L, most of specimens are failed in base metal, but occurs brittle fracture in weld metals at some specimens in the face of good welding conditions. In the process of tensile test, lap joint welded STS429L specimens are transformed locally. The brittle fracture occurs that local transforming area exists in weld metals. But, butt welding specimens made by same materials showed ductile fracture in tensile test and bending test. In this study, suppose the reason of brittle fracture is in the combined local transform and tensile stress, through analysis of bead geometry, evaluate geometrical factor of brittle fracture in lap joint welded STS429L.

Fatigue Strength For The Butt Welded Joint Of High Strength Steel (고강도강(高强度鋼) 맞대기 용접연결부(鎔接連結部)의 피로강도(疲勞强度))

  • Kim, Sung Hoon;Bae, Doo Byong;Kim, Myeong Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.385-394
    • /
    • 2002
  • Currently, high strength steel is not used for steel bridges in Korea, except for the SM570 high strength steel in very isolated cases. The study aimed to promote the active adaptation of high strength steel for long-span steel bridges. Thus, the fatigue behavior of SM570 and POSTEN80 high strength steel was investigated. For the experimental study, the butt welded joints samples were manufactured. Likewise, regular amplitude tensile fatigue tests were conducted. Test results, e.g., location of fatigue cracks and their propagation were compared with the findings of other researchers. After analyzing the effects of fatigue strength, e.g., static tensile strength and plate thickness of base metal, basic data for fatigue design criteria of SM570 and POSTEN80 high strength steel were presented.

Fatigue Strength of Tensile Specimen with Butt Welded Joints (인장시험체 맞대기 용접부의 피로강도)

  • Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.1-6
    • /
    • 2004
  • Fatigue tests were carried out for butt welded joints with SM520-TMC steel plate with thickness between 20mm and 80mm. The test results were analysed statistically and the effect of plate thickness on the fatigue strength investigated. The fatigue strengths based on nominal stress range satisfy the requirement of the standards. Due to misalignment of the specimens, the measured stresses are higher than the nominal stresses especially for 20mm thick plates. If fatigue strengths are evaluated based on the measured stresses, then the fatigue strengths are greater than those based on nominal stresses. The results show that the thickness effect is similar to the formula proposed by Gurney.

Effects of Tool Plunge Position on Mechanical Properties of Friction-stir-weleded Region in A6061-T6/AZ31 Dissimilar Metals (A6061-T6/AZ31 이종금속 마찰교반접합부의 기계적 특성에 미치는 툴 삽입 위치의 영향)

  • Lee, Kwang-Jin;Kim, Sang-Hyuk
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.22-26
    • /
    • 2012
  • Butt-joints of A6061-T6 and AZ31 plates were successfully manufactured by using a friction stir welding method. Off-set free joints and off-set joints were fabricated to investigate the effect of the tool plunge position on the mechanical properties of the joints. Hardness test, tensile test and charpy impact test was performed to evaluate the mechanical properties of the joints. Off-set condition resulted in increase of mechanical properties of the joints. The variation of the hardness distribution in the SZ was also stabilized in the off-set condition. Tensile strength of the off-set joint was about 85% against to that of the AZ31 base metal. Impact absorption energy by Charpy-Impact-Test of the off-set joint also increased by almost 2 times against to that of the AZ31 base metal.