• Title/Summary/Keyword: TEM(transmission electron microscope)

Search Result 380, Processing Time 0.027 seconds

Characterization and Modification of Low Molecular Water-Soluble Chitosan for Pharmaceutical Application

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1303-1307
    • /
    • 2003
  • The low molecular water-soluble chitosan nanoparticles (LMWSC-NPs) were prepared, which was modified with hydrophilic and hydrophobic moieties to evaluate the potential for pharmaceutics application. The synthesis of LMWSC-NPs was identified by FT-IR and $^1H$-NMR spectra. Also, we measured the photon correlation spectroscopy (PCS), transmission electron microscope (TEM) and atomic force microscope (AFM) to investigate the characteristics and morphology of the LMWSC-NPs. At the PCS measurement, the more increase the number of substitutive group, the more decrease the positive charge of LMWSC-NP surface. From the results of TEM and AFM, spherical morphologies were observed, and their sizes were 30-150 nm. Resultantly, LMWSC-NPs prepared in this experiment will be expected as a suitable device for the drug targeting system.

Reliability Test of the TEM Rotation Holder for 3-D Structure Analysis (3차원적 구조분석을 위한 TEM Rotation Holder의 신뢰도 점검)

  • Kim, Jin-Gyu;Jeong, Jong-Man;Kim, Young-Min;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.209-216
    • /
    • 2006
  • Accuracy and precision of the goniometer and the specimen holder should be measured and corrected to improve reliability of 3-D structure analysis using transmission electron microscopy (TEM). In this study, we described the operation principle and performance of the Gatan rotation holder. Through analysis of the images taken inside the microscope, rotation angles were measured within the accuracy of ${\pm}0.42^{\circ}$. For comparison the rotation angles were measured outside the microscope using a home-made measurement tool, which resulted in the accuracy of ${\pm}0.6^{\circ}$. Additionally, we found abnormal specimen drifts during rotation probably due to the unstable engagement between the specimen cup and the rotation belt.

Ultra-structural Observations of Colletotrichum orbiculare on Cucumber Leaves Pre-treated with Chlorella fusca (Chlorella fusca를 전처리한 오이 잎에서 오이탄저병균의 초미세 감염구조 관찰)

  • Lee, Yun Ju;Kim, Su Jeong;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Chlorella is one of the microorganisms which can live autotrophically by their own photosynthesis. It was previously revealed that pre-treatment of Chlorella fusca caused a suppression of appressorium formation on the cucumber leaves after inoculation with Colletothrichum orbiculare. In this study, the ultrastructures of C. orbiculare on the cucumber leaves pretreated with C. fusca were observed using both scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM images revealed that most fungal conidia and hyphae were attached with lots of C. fusca cells. Also, the conidia could germinate but not form appressorium, which is necessary to penetrate into host tissue. These observations suggested that C. fusca adjoined to the fungus may play a role in suppression of the appressorium formation. On the other hand, the observations of TEM showed no remarkable cytological differences on the ultrastructures of the intracellular hyphae between in the pre-treated and untreated leaves. It seemed that the fungus could grow in the pre-treated plant tissues as in the untreated one. Based on these observations, it is suggested that the suppression of appressorium on the leaf surfaces by the C. fusca cells may be a main cause of the reduction of the anthracnose disease.

Characteristics of Contact resistivity on RTP annealing temperature and time after Plasma ion implant (플라즈마 이온주입 후 RTP 열처리 온도와 시간에 따른 접촉저항 특성)

  • Choi, Jang-Hun;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • In this paper, plasma ion implant is performed with $PH_3$ gas diluted by helium gas on P-type Si wafer (100). Spike Rapid Thermal Processing(RTP) annealing performed for 30~60 sec from $800\;^{\circ}C$ to $1000\;^{\circ}C$ in $N_2+O_2$ ambient. Crystalline defect is analyzed by Transmission Electron Microscope(TEM) and Double crystal X-ray Diffraction(DXRD). Contact resistivity($\rho c$), contact resistance(Rc) and sheet resistance(Rs) are analyzed by measuring Transfer Length Method(TLM) using 4155C analysis. As annealing temperature increase, Rs decrease and ${\rho}c$ and Rc increase at temperature higher than $850\;^{\circ}C$. We achieve low Rs, ${\rho}c$ and Rc with Plasma ion implant and spike RTP.

  • PDF

The Effect of Anionic Surfactants in Synthesizing Calcium Carbonate/Acrylate Core-Shell Polymer (탄산칼슘/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • The core-shell latex particles were prepared by sequential emulsion polymerization using alkyl methacrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We study the effects of core-shell structure of calcium carbonate/alkyl methacrlyate in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alkyl ether sulfate (EU-S133D)). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by transmission electron microscope (TEM).

Electron Holography of Advanced Nanomaterials

  • Shindo, D.;Park, H.S.;Kim, J.J.;Oikawa, T.;Tomita, T.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.63-69
    • /
    • 2006
  • By utilizing a field emission gun and a biprism installed on a transmission electron microscope (TEM), electron holography is extensively carried out to visualize the electric and magnetic fields of nanomaterials. In the electric field analysis, the distribution of electric potential in a sharp tip made of W coated with $ZrO_2$ is visualized by applying the voltage to the tip. Denser contour lines due to the electric potential are observed with an increase in the bias voltage. In the magnetic field analysis by producing the strong magnetic field with a sharp magnetic needle made of a permanent magnet, the in situ experiment is carried out to investigate the magnetization of hard magnetic materials. The results of these experiments clearly demonstrate that electron holography is a promising advanced transmission electron microscopy technique to characterize the electric and magnetic properties of nanomaterials.

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Measuring the Tensile Properties of the Nanostructure Using a Force Sensor (힘센서를 이용한 나노구조체의 인장물성 측정)

  • Jeon, Sang-Gu;Jang, Hoon-Sik;Kwon, Oh-Heon;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • It is important to measure the mechanical properties of nanostructures because they are required to determine the lifetime and reliability of nanodevices developed for various fields. In this study, tensile tests for a multi-walled carbon nanotube (MWCNT) and a ZnO nanorod were performed in a scanning electron microscope (SEM). The force sensor was a cantilever type and was mounted in front of a nanomanipulator placed in the chamber. The nanomanipulator was controlled using a joystick and personal computer. The nanostructures dispersed on the cut area of a transmission electron microscope (TEM) grid were gripped with the force sensor by exposing an electron beam in the SEM; the tensile tests were the performed. The in situ tensile loads of the nanostructure were obtained. After the tensile test, the cross-sectional areas of the nanostructures were observed by TEM and SEM. Based on the TEM and SEM results, the elastic modulus of the MWCNT and ZnO nanorod were calculated to be 0.98 TPa and 55.85 GPa, respectively.

A Study on the Creep Strength of L12 and B2-ordered Intermetallics

  • Han, Seung-Oh;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1070-1077
    • /
    • 2010
  • The creep rates of polycrystalline $L1_2$-ordered $Co_3Ti$ and B2-ordered NiAl-Hf intermetallics decrease appreciably with the fine precipitation of the coherent disordered fcc Co-rich phase and $Ni_2AlHf$ phase. With B2-ordered NiAl containing $L2_1-Ni_2AlHf$ precipitates, transmission electron microscope observations of the interaction between dislocations and spherical precipitates revealed that the dislocations tend to be strongly attracted to the particle interfaces during the creep deformation. On the other hand, with $L1_2$-ordered $Co_3Ti$, the significance of the threshold stress is discussed based upon the transmission electron microscope observations of the interaction between dislocations and precipitates. The superdislocations produced during deformation tend to be strongly attracted and dissociated as they meet the coherent disordered precipitates because the anti-phase boundary energy in the disordered phase was zero. An extra force required to pull the dislocations out of the disordered particles during the creep deformation establishes the threshold stress which is beneficial for improving creep strength under lower stresses.

Characterization of Basal Plane Dislocations in PVT-Grown SiC by Transmission Electron Microscopy

  • Jeong, Myoungho;Kim, Dong-Yeob;Hong, Soon-Ku;Lee, Jeong Yong;Yeo, Im Gyu;Eun, Tai-Hee;Chun, Myoung-Chuel
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.656-661
    • /
    • 2016
  • 4H- and 6H-SiC grown by physical vapor transport method were investigated by transmission electron microscopy (TEM). From the TEM diffraction patterns observed along the [11-20] zone axis, 4H- and 6H-SiC were identified due to their additional diffraction spots, indicating atomic stacking sequences. However, identification was not possible in the [10-10] zone axis due to the absence of additional diffraction spots. Basal plane dislocations (BPDs) were investigated in the TEM specimen prepared along the [10-10] zone axis using the two-beam technique. BPDs were two Shockley partial dislocations with a stacking fault (SF) between them. Shockley partial BPDs arrayed along the [0001] growth direction were observed in the investigated 4H-SiC. This arrayed configuration of Shockley partial BPDs cannot be recognized from the plan view TEM with the [0001] zone axis. The evaluated distances between the two Shockley partial dislocations for the investigated samples were similar to the equilibrium distance, with values of several hundreds of nanometers or even values as large as over a few micrometers.