Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.12.1070

A Study on the Creep Strength of L12 and B2-ordered Intermetallics  

Han, Seung-Oh (Institute of Fusion Technology, Hoseo University)
Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.12, 2010 , pp. 1070-1077 More about this Journal
Abstract
The creep rates of polycrystalline $L1_2$-ordered $Co_3Ti$ and B2-ordered NiAl-Hf intermetallics decrease appreciably with the fine precipitation of the coherent disordered fcc Co-rich phase and $Ni_2AlHf$ phase. With B2-ordered NiAl containing $L2_1-Ni_2AlHf$ precipitates, transmission electron microscope observations of the interaction between dislocations and spherical precipitates revealed that the dislocations tend to be strongly attracted to the particle interfaces during the creep deformation. On the other hand, with $L1_2$-ordered $Co_3Ti$, the significance of the threshold stress is discussed based upon the transmission electron microscope observations of the interaction between dislocations and precipitates. The superdislocations produced during deformation tend to be strongly attracted and dissociated as they meet the coherent disordered precipitates because the anti-phase boundary energy in the disordered phase was zero. An extra force required to pull the dislocations out of the disordered particles during the creep deformation establishes the threshold stress which is beneficial for improving creep strength under lower stresses.
Keywords
intermetallics; aging; creep; transmission electron microscopy (TEM); threshold stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. M. Sha and D. N. Duhl, High Temperature Ordered Intermetallic Alloys II, Mat. Res. Soc. Symp. Proc. 81, 411 (1987).
2 H. J. Jun, C. G. Park, and Y. W. Chang, J. Kor. Inst. Met. & Mater. 38, 1019 (2000).
3 M. V. Nathal, Ordered Intermetallics-Physical Metallurgy and Mechanical Behavior, NATO ASI Series E, 213, 541 (1992).
4 T. Khan, P. Caron, and S. Naka, High Temperature Aluminides and Intermetallics, TMS, 219 (1990).
5 S. H. Song, K. Kishida, M. Demura, M. C. Kim, M. H. Oh, T. Hirano, and D. M. Wee, J. Kor. Inst. Met. & Mater. 44, 10 (2006).
6 J. H. Schneibel and P. M. Hazzledine, Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, NATO ASI Series E 213, 565 (1992).
7 T. Takasugi and O. Izumi, Acta Met. 33, 39 (1985).   DOI   ScienceOn
8 D. H. Sastry and R. S. Sunder, Proc. of the Int. Symp. on Nickel and Iron Aluminides, ASM, 123 (1996).
9 R. Darolia, J. Met. 43, 44 (1991).
10 R. Darolia, Structural Intermetallics, MMS, 495 (1993).
11 W. S. Walson, R. D. Field, J. R. Dobbs, D. F. Lahrman, and R. Darolia, Structural Intermetallics, MMS, 523 (1993).
12 M. Takeyama and C. T. Liu, J. Mater. Res. 5, 1189 (1990).   DOI
13 A. Garg, S. V. Raj, and R. Darolia, Micromechnics of Advanced Materials 255 (1993).
14 A. Garg, R. D. Nobe, and R. Darolia, Acta Metall. Mater. 44, 2809 (1996).   DOI   ScienceOn
15 H. Nakajima, T. Nakamura, M. Koiwa, T. Takasugi, and O. Izumi, Scr. Metall. 22, 507 (1988).   DOI   ScienceOn
16 J. C. Gibeling and W. D. Nix, Mater Sci. Eng. 45, 123 (1980).   DOI   ScienceOn
17 R. L. Coble, J. Appl. Phys. 34, 1679 (1963).   DOI
18 S. L. Robinson and O. D. Sherby, Acta Metall. 24, 399 (1976).   DOI   ScienceOn
19 F. A. Mohamed and T. G. Langdon, Acta Metall. 22, 779 (1974).   DOI   ScienceOn
20 J. Weetman, J. Appl. Phys. 28, 362 (1957).   DOI
21 G. Gonzalez-Doncel and O. D. Sherby, Acta Metall. Mater. 41, 2797 (1993).   DOI   ScienceOn
22 D. B. Miracle, Acta Metall. Mater. 41, 649 (1993).   DOI   ScienceOn
23 S. V. Raj and S. C. Farmer, Metall. Mater. Trans. 26A, 343 (1995).
24 J. Rosler and E. Arzt, Acta Metall. Mater. 38, 671 (1990).   DOI   ScienceOn