• Title/Summary/Keyword: TE10

Search Result 1,572, Processing Time 0.024 seconds

Optoelectrical Properties of HgCdTe Epilayers Grown by Hot Wall Epitaxy

  • Yun, Suk-Jin;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.277-281
    • /
    • 2004
  • $Hg_{1-x}Cd_{x}Te$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111)/GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

Implementation and Interoperability Test for the IEEE 802.1Qay PBB-TE System (IEEE 802.1Qay PBB-TE 표준 시스템 구현과 상호 운용성 검증)

  • Kim, Hyun-Pil;Moon, Sang-Won;Choi, Jin-Seek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1636-1646
    • /
    • 2011
  • In this paper, we implement IEEE 802.1Qay PBB-TE system and verify interoperability with the commercial PBB-TE product. In order to verify interoperability, we implement the standard protocol as well as the system integrating functions including system kernel control functions. Through interoperability tests with the commercial system, we verify the implemented protocol to perform PBB-TE TESI and ESP configurations, and protection switching as well as monitoring the results.

Synthesis and Low-concentration (50 ppm) NO2 Sensing Properties of Bare and ZnO (n) Decorated TeO2 (p) Nanowires (ZnO가 첨가된 TeO2 나노와이어의 합성 및 저농도(50 ppm) 이산화질소 가스 센싱 특성)

  • Yu, Dong Jae;Shin, Ka Yoon;Oum, Wansik;Kang, Suk Woo;Kim, Eun Bi;Kim, Hyeong Min;Kim, Hyoun Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.435-441
    • /
    • 2022
  • We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 ℃ towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 ℃, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.

Electrical and Memory Switching Characteristics of Amorphous Thin-Film $As_{10}Ge_{15}Te_{75}$ Thin-Film (비정질 $As_{10}Ge_{15}Te_{75}$ 박막의 전기적 및 메모리 스위칭 특성)

  • 이병석;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.234-237
    • /
    • 1996
  • The amorphous chalogenide semiconductors are new material in semiconductor physics. Their properties, especially electronic and optical properties are main motives for device application. Amorphous As$_{10}$Ge$_{15}$ Te$_{75}$material has the stable ac conductivity at high frequency and the dc memory switching property. At higher frequency than 10MHz, ac conductivity of As$_{10}$Ge$_{15}$ Te$_{75}$ thin film is much higher than below frequency and independent of temperature and frequency. If the dc voltages are applied between edges of thin film, one can see the dc memory switching phenomenon, in other words the dc conductivity increases quite a few of magnitude after the threshold voltage is applied. Using the stable ac conductivity at high frequency and the increase of conductivity after dc memory switching, As$_{10}$Ge$_{15}$ Te$_{75}$thin film is considered as new material for microwave switch devices.vices.es.vices.

  • PDF

Study on $CdIn_{2}Te_{4}$ single crystal growth and electrical characteristics ($CdIn_{2}Te_{4}$ 단결정 성장과 전기적 특성)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.32-43
    • /
    • 1996
  • A $CdIn_{2}Te_{4}$ single crystal was grown by modified veritical bridgman method. The $CdIn_{2}Te_{4}$ single crystal was evaluated to be tetragonal by the powder method. The $CdIn_{2}Te_{4}$ single crystal was confirmed to be grown with its c axis along the lengthe of the boule by the Laue reflection method. Hall effect of $CdIn_{2}Te_{4}$ single crystal was estimated by van der pauw method from 293 K to 30 K. Hall data of the sample perpendicular to c axis was $n=8.75{\times}10^{23}electrons/m^{3},\;R_{H}=7.14{\times}10^{-5}m^{3}/C,\;{\sigma}=176.40{\omega}^{-1}m^{-1},\;{$\mu}=3.41{\times}10^{-2}m^{2}/V.s$ and the sample parallel to c axis was $n=8.61{\times}10^{23}electrons/m^{3},\;R_{H}=7.26{\times}10^{-5}m^{3}/C,\;{\sigma}=333.38{\omega}^{-1}m^{-1}\;and\;{$\mu}=2.42{\times}10^{-2}m^{2}/V.s$ for room temperature. The value of Hall coefficient on sample perpendicular or parallel to c axis were positive. There $CdIn_{2}Te_{4}$ single crystal was p-type semiconductor.

  • PDF

Microstructures and Thermal Properties of Water Quenched Thermoelectric Material in Bi2Te3-PbTe System (급속 응고 된 Bi2Te3-PbTe계 열전소재의 미세구조와 열전 특성)

  • Yim, Ju-Hyuk;Jung, Kyoo-Ho;You, Hyun-Woo;Kim, Kwang-Chon;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.502-507
    • /
    • 2010
  • In order to design nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system are investigated for their micro structure properties. For this synthesis, the liquid alloys are cooled by the water quenching method. Micro structure images are obtained by using an electron probe micro analyzer(EPMA). Dendritic and lamellar structures are clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. The increase in the $Bi_2Te_3$ composition ratio causes to change of the structure from dendritic to lamellar. The Seebeck coefficient of sample 5, in which the mixture rate of $Bi_2Te_3$ is 83%, is measured as the highest value. In contrast, the others decrease with the increase of the $Bi_2Te_3$ composition ratio. Meanwhile, p-type characteristics are observed in sample 6, at 91%-$Bi_2Te_3$ mixture rate. The power factors of the all samples are calculated with the Seebeck coefficient and resistivity.

Electrochemical Characterization of Multilayered CdTe/PSS Films Prepared by Electrostatic Self-assembly Method

  • Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun;Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.257-261
    • /
    • 2014
  • Multilayered CdTe/PSS films were prepared by the electrostatic self-assembly method in an aqueous medium. Positively-charged cadmium telluride (CdTe) nanoparticles and anionic polyelectrolyte, poly (sodium 4-styrene sulfonate) (PSS) were assembled alternately in order to build up a multilayered film structure. A linear proportion of absorbance to the number of bilayers suggests that an equal amount of CdTe was adsorbed after each dipping cycle, which resulted in the buildup of a homogenous film. The binding energies of elements (Cd and Te) in multilayered CdTe/PSS film shifted from those of the CdTe nanoparticles in the pure state. This result indicates that the interfacial electron densities were redistributed by the strong electrostatic interaction between the oppositely-charged CdTe and PSS. Electrochemical properties of the multilayered CdTe/PSS films were studied in detail by cyclic voltammetry (CV).

A Study on the Electrical Properties of MIM Structures Based on Ge2Sb2Te5 and Ge8Sb2Te11 Thin Films for ReRAM (ReRAM응용을 위한 Ge2Sb2Te5와 Ge8Sb2Te11 기반 MIM구조 박막의 전기적 특성 연구)

  • Jang, Hwi-Jong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.144-147
    • /
    • 2017
  • In this study, $Ge_2Sb_2Te_5$ and $Ge_8Sb_2Te_{11}$ were used as an insulator layer to fabricate ReRAM devices. The resistance change is correlated to the appearance or disappearance of a conductivity filament at the surface of the GeSbTe layer. Changes in the electrical properties of ITO/GeSbTe/Ag devices were measured using a I-V-L measurement system. As a result, compared to the $ITO/Ge_8Sb_2Te_{11}/Ag$ device, this $ITO/Ge_2Sb_2Te_5/Ag$ ReRAM device exhibits highly uniform bipolar resistive switching characteristics, such as the operating voltages, and the resistance values.

Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density (수직배양된 고집적 CdTe-Si 나노구조체의 제조방법)

  • Im, Jinho;Hwang, Sung-hwan;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.185-191
    • /
    • 2017
  • Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.

Thermoelectric Properties of p-type 25% $Bi_{2}Te_{3}+75%Sb_{2}Te_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 p-type 25% $Bi_{2}Te_{3}+75% Sb_{2}Te_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.246-252
    • /
    • 1996
  • $Bi_{2}Te_{3}-Sb_{2}Te_{3}$, $Bi_{2}Te_{3}-Bi_{2}Se_{3}$ solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073$\times$$10^{-3}K^{-4}$. The bending strength of the material, hot pressed at 45$0^{\circ}C$, was 5.87 kgf/${mm}^2$.

  • PDF