• Title/Summary/Keyword: TE Scattering

Search Result 88, Processing Time 0.024 seconds

Scattering of by Dielectric-Coated Conducting Grating with an Arbitrary Profile (유전체가 덮혀진 임의의 Profile을 갖는 도체 격자에 의한 산란현상)

  • 이동국;이철훈조웅희조영기
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.375-378
    • /
    • 1998
  • Scattering of TE waves by a periodic conducting surface with dielectric cover is considered. A method for the aalysis of scattering from periodic structures based on the numerical solution of the integral equations is further developed. Using periodicity (Floquet's theorem), the range of the integral equations is reduced to a single period where the kernels are the Green's functions for periodic arrays. The numerical solution of the intergral equations is obtained using the method of moments. From numerical results for the reflected power the effects of surface profile shape, period-to-depth ratio, and cover permittivity on the scattering behaviors are examined.

  • PDF

The Effect of N2 Gas Doping on Sb2Te3Thin Film for PRAM Recording Layer (PRAM 기록막용 Sb2Te3 박막의 질소 첨가에 대한 영향)

  • Bae, Jun-Hyun;Cha, Jun-Ho;Kim, Kyoung-Ho;Kim, Byung-Geun;Lee, Hong-Lim;Byeon, Dae-Seop
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.276-279
    • /
    • 2008
  • In this research, properties of $N_2$-doped $Sb_2Te_3$ thin film were evaluated using 4-point probe, XRD and AFM. $Sb_2Te_3$ material has faster crystallization rate than $Ge_2Sb_2Te_5$, but sheet resistance difference between amorphous and crystallization state is very low. This low sheet resistance difference decreases sensing margin in reading operation at PRAM device operation. Therefore, in order to overcome this weak point, $N_2$ gas was doped on $Sb_2Te_3$ thin film. Sheet resistance difference between amorphous and crystallized state of $N_2$-doped $Sb_2Te_3$ thin film showed about $10^4$ times higher than Un-doped $Sb_2Te_3$ thin film because of the grain boundary scattering.

Scattering Characteristics of the Infinite Strip Conductor for TE Waves (무환히 긴 도체 스트립의 TE파 산란 특성)

  • Chang, Jae-Sung;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.18-22
    • /
    • 1989
  • We calculate the distribution of the induced current on the strip by the TE waves on the infinite conducting strip. The boundary equations represented as the spatial domain function becomevery complicated equations including convolution integral. As we transform it to the spectral domain, we have a very simple equation expressed by some algebraic multiplication of the current density function and Green's function. It is shown that the computation result of the induced current distribution gives the optimum value, when the stop condition of iteration presented in this paper are satisfied.

  • PDF

Scattering of Coaxial Waveguide with Periodic Axial Slots Using Characteristic Mode Theory : TE Case (특성모드 이론을 이용한 주기적인 축방향 슬롯이 있는 동축선로 도파관 구조의 산란특성 : TE의 경우)

  • 윤리호;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.629-635
    • /
    • 1997
  • The theory of characteristic modes for coaxial waveguide with periodic axial slots is used to derive the weighted eigenvalue equation for calculating the characteristic values and the characteristic currents. Once the characteristic values and the characteristic currents are obtained, the important quantities such as the equivalent magnetic current, radiation patterns, and RCS are determined. Numerical results of the equivalent magnetic currents, radiation patterns, and RCS are compared with those obtained by use of the method of moments. A fairly good correspondence is observed between them.

  • PDF

Design of Mode Transducer between $TE_{10}$ Mode in Rectangular Waveguide and $TE_{11}$ Mode in Circular Waveguide (구형 도파관 $TE_{10}$모드와 원형 도파관 $TE_{11}$모드간의 모드변환기 설계)

  • Doo-Yeong Yang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.246-253
    • /
    • 1996
  • In this paper, a problem that occurred in the telegraphist equation established by mode conversion method is solved as analysis tapered transmission line is applied to a waveguide taper. After comparing and analyzing the taper function with variant properties, we select on of taper functions not only that is easily designed but also that have good properties. And then we propose the applicant method to design the waveguide taper and deal with the design of mode transducer between rectangular waveguide and circular waveguide. The measured results of scattering coefficients for the mode transducer fabricated with designed data are agreed well with the theoretical results and the validity of the proposed design and analysis method has been confirmed.

  • PDF

Calculation of Proton-Induced Reactions on Tellurium Isotopes Below 60 MeV for Medical Radioisotope Production

  • Kim, Doohwan;Jonghwa Chang;Yinlu Han
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.361-371
    • /
    • 2000
  • The 123Te(p,n)123I, 124Te(p,n)124I and 124Te(p,2n)123I reactions, among the many reaction channels opened, are the major reactions under consideration from a diagnostic purpose because reaction residuals as the gamma emitters are used for most radiophamaceutical applications involving radioiodine. Based on the available experimental data, the absorption cross sections and elastic scattering angular distributions of the proton-induced nuclear reaction on Te isotopes below 60 MeV are calculated using the optical model code APMNK. The transmission coefficients of neutron, proton, deuteron, trition and alpha particles are calculated by CUNF code and are fed into the GNASH code. By adjusting level density parameters and the pair correction values of some reaction channels, as well as the composite nucleus state density constants of the pre-equilibrium model, the production cross sections and energy-angle correlated spectra of the secondary light particles, as well as production cross sections and energy distributions of heavy recoils and gamma rays are calculated by the statistical plus pre-equilibrium model code GNASH. The calculated results are analysed and compared with the experimental data taken from the EXFOR. The optimized global optical model parameters give overall agreement with the experimental data over both the entire energy range and all tellurium isotopes.

  • PDF

Doping Effects to the Thermoelectric Power Factor of Bi2Te3 Thin Films (Bi2Te3계 열전박막의 열전 출력인자에 미치는 첨가제의 영향)

  • Bae, Sang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.141-146
    • /
    • 2020
  • Thermoelectric Bi2Te3 thin films were synthesized by a co-sputtering method at 300℃. A Fe dopant was considered to enhance the thermoelectric properties of the system. The Seebeck coefficient of the Fe-doped films increased whereas the electrical conductivity decreased. As a result, the power factor of the system increased owing to the enhanced Seebeck coefficient. Grain growth inhibition was detected in the Fe-doped system, which produced more grain boundaries in the Fe-doped films than in the undoped system. The increased grain boundary scattering was deemed to be effective for a reduced thermal conductivity. This is advantageous for the preparation of high-performance thermoelectric films.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

Band-Gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3-10% Bi_2Se_3$ Single Crystals (90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정의 밴드갭 에너지와 열전특성)

  • Ha, Heon-Pil;Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.349-354
    • /
    • 1999
  • The temperature dependences of the Hall coefficient, carrier mobility, electrical resistivity, Seebeck coefficient, thermal conductivity, and figure-of-merit of the undoped and $CdI_2$-doped 90% $Bi_2Te_3-10% Bi_2Se_3$, single crystals, grown by the Bridgman method, have been characterized at temperatures ranging from 77K to 600K. The saturated carrier concentration and degenerate temperature of the undoped 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal are $5.85\times10_{18}cm^{-3}$ and 127K, respectively. The scattering parameter of the 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal is determined to b -0.23, and the electron mobility to hole mobility ratio ($\mu_e/\mu_h)$ is 1.45. The bandgap energy at 0K of the 90% <$Bi_2Te_3-10% Bi_2Se_3$ single crystal is 0.200 eV. Adding $CdI_2$as a donor dopant, a maximum figure-of-merit of $3.2\times10^{-3}/K$$CdI_2$-doped specimen.

  • PDF

Design of Thomson Scattering System Using VPH Grating for Plasma Processing

  • Joa, Sang-Beom;Ko, Min-Guk;Kang, In-Je;Yang, Jong-Keun;Yu, Yong-Hun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.525-525
    • /
    • 2013
  • Low temperature plasma diagnosis is one of the big issues in laboratory scale or processing industry. One of the most powerful techniques of plasma diagnostics is the use of the scattering of electromagnetic radiation from the plasma. Electron temperature and density are important parameters for understanding the information of plasmas in the plasma processing industry. Laser scattering experiments on plasma can provide a substantial amount of information about plasma parameters such as the electron density ne, the electron temperature Te, and the neutral density nn and temperature Tn. Thomson scattering spectroscopy is used several method, in accordance with detector type. Commonly, Thomson scattering is used several notch filter to separate expanded wavelength. Since using a spectrometer with surface relief grating or notch filter, the system of the measurement will be complicated and bigger. In this study, using VPHG (Volume Phase Holographic Grating) in order to install the simple and cheap system. VPHG has the advantage of the system installation, because it can be Transmission Type. The diffraction efficiency and dispersion angle of VPHG is higher than the surface relief grating relatively. For a wavelength and bandwidth selection, Using a slit or mask to select a rejection wavelength instead of notch filter.

  • PDF