• Title/Summary/Keyword: TDOA Estimation

Search Result 86, Processing Time 0.02 seconds

A Location Estimation Method Using TDOA Scheme in Vessel Environment (선박 환경에서 TDOA 기법에 의한 위치 추정 방법)

  • Kim, Beom-mu;Jeong, Min A;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1934-1942
    • /
    • 2015
  • An estimation problem in the environment which GPS signals do not reach, should be solved by employing an indoor location estimation scheme. Location estimation schemes for indoor environments generally include the AOA, TOA, RSS, Fingerprint, and TDOA. For a ship environment where there exist many spaces enclosed by iron plates, the TDOA scheme is appropriate because location estimation is usually performed at a closed range. In this paper, we address the problem of estimating the location of a terminal under the ship environment. The problem of location estimation by using the TDOA is presented in detail, and then an algorithm for applying the estimation to the ship environment is proposed. Finally, the proposed algorithm of location estimation in a ship by the TDOA scheme is verified through simulations from three viewpoints.

Performance Improvement of CPSP Based TDOA Estimation Using the Preemphasis (프리엠퍼시스를 이용한 CPSP 기반의 도달시간차이 추정 성능 개선)

  • Kwon, Hong-Seok;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • We investigate and analyze the problems encountered in frame-based estimation of TDOA (Time Difference of Arrival) using CPSP function. Spectral leakage occurring in framing of a speech signal by a rectangular window could make estimation of CPSP spectrum inaccurate. Framing with other windows to reduce the spectral leakage distorts the signal due to the asynchronous weighting around the frame specifically both ends of the frame. These problems degrade the performance of the CPSP-based TDOA estimation. In this paper, we propose a method to alleviate those problems by pre-emphasis of the speech signal. It reduces the influence of the spectral leakage by reducing dynamic range of the spectrum of a speech signal with pre-emphasis. To validate the proposed method of pre-emphasis, we carry out TDOA estimation experiments in various noise and reverberation conditions, Experimental results have shown that the framing of pre-emphasized microphone output by a rectangular window achieves higher success rate of TDOA estimation than any other framing methods.

A Study of DOA estimation based on TDOA/AOA for jammer localization (전파위협원 위치결정을 위한 TDOA/AOA 기반의 DOA 추정 기법 연구)

  • Choi, Heon-Ho;Jin, Mi-Hyun;Lim, Deok-Won;Nam, Gi-Wook;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.962-969
    • /
    • 2011
  • This paper proposes the DOA estimation method based on TDOA/AOA for jammer localization method in GBAS environment. The proposed method can effectively estimate DOA of jamming signal as the range for DOA estimation is reduced remarkably by using DOP and 1st approximate solution using TDOA measurements only. Through the proposed method, more precise DOA can be obtained and the performance of jammer localization is increased simultaneously. Also, the effectiveness of proposed method will be confirmed through the simulated results.

Emitter Geolocation Based on TDOA/FDOA Measurements and Its Analysis (TDOA/FDOA 융합 기반 신호원의 위치추정 및 성능 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.746-756
    • /
    • 2013
  • The emitter geolocation method using the time difference of arrival (TDOA) and the frequency difference of arrival (FDOA) has more accurate performance comparing to the single TDOA or FDOA based method. The estimation performance varies with the sensor paring strategies, the deployment and velocities of the sensors. Therefore, to establish effective strategy on the electronic warfare system, it is required to analyze the relation between the estimation accuracy and the operational condition of sensors. However, in the conventional non-iterative method, the restriction of the deployment of sensors and the reference sensor exists. Therefore, we derive the emitter geolocation method based on a Gauss-Newton method which is available to apply to any various sensor pairs and the deployment and velocities of the sensors. In addition, simulation results are included to compare the performance of geolocation method according to the used measurements: the combined TDOA/FDOA, TDOA, and FDOA. Also, we present that the combined TDOA/FDOA method outperforms over single TDOA or FDOA on the estimation accuracy with the CEP plane.

3-D Sound Source Localization using Energy-Based Region Selection and TDOA (에너지 기반 영역 선택과 TDOA에 의한 3차원 음원 위치 추정)

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.294-300
    • /
    • 2017
  • This paper proposes a method for 3-D sound source localization (SSL) using region selection and TDOA. 3-D SSL involves the estimation of an azimuth angle and an elevation angle. With the aim of reducing the computation time, we compare signal energies to select one out of three regions. In the selected region, we compute only one TDOA value for the azimuth angle estimation. Also, to estimate the vertical angle, we choose the higher energy signal from the selected region and pair it up with the elevated microphone's signal for TDOA computation and elevation angle estimation. Our experimental results show that the proposed method achieves average error values of $0.778^{\circ}$ in azimuth and $1.296^{\circ}$ in elevation, which is similar to other methods. The method uses one energy comparison and two TDOA computations therefore, the total processing time is reduced.

A study on the sequential algorithm for simultaneous estimation of TDOA and FDOA (TDOA/FDOA 동시 추정을 위한 순차적 알고리즘에 관한 연구)

  • 김창성;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.72-85
    • /
    • 1998
  • In this paper, we propose a new method that sequentially estimates TDOA(Time Delay Of Arrival) and FDOA(Frequency Delay Of Arrival) for extracting the information about the bearing and relative velocity of a target in passive radar or sonar arrays. The objective is to efficiently estimate the TDOA and FDOA between two sensor signal measurements, corrupted by correlated Gaussian noise sources in an unknown way. The proposed method utilizes the one dimensional slice function of the third order cumulants between the two sensor measurements, by which the effect of correlated Gaussian measurement noises can be significantly suppressed for the estimation of TDOA. Because the proposed sequential algoritjhm uses the one dimensional complex ambiguity function based on the TDOA estimate from the first step, the amount of computations needed for accurate estimationof FDOA can be dramatically reduced, especially for the cases where high frequency resolution is required. It is demonstrated that the proposed algorithm outperforms existing TDOA/FDOA estimation algorithms based on the ML(maximum likelihood) criterionandthe complex ambiguity function of the third order cumulant as well, in the MSE(mean squared error) sense and computational burden. Various numerical resutls on the detection probability, MSE and the floatingpoint computational burden are presented via Monte-Carlo simulations for different types of noises, different lengths of data, and different signal-to-noise ratios.

  • PDF

Fast Time Difference of Arrival Estimation for Sound Source Localization using Partial Cross Correlation

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.105-114
    • /
    • 2015
  • This paper presents a fast Time Difference of Arrival (TDOA) estimation for sound source localization. TDOA is the time difference between the arrival times of a signal at two sensors. We propose a partial cross correlation method to increase the speed of TDOA estimation for sound source localization. We do this by predicting which part of the cross correlation function contains the required TDOA value with the help of the signal energies, and then we compute the cross correlation function in that direction only. Experiments show approximately 50% reduction in the cross correlation computation time thereby increasing the speed of TDOA computation. This makes it very relevant for real world surveillance.

Performance Analysis of Location Estimation Algorithm Using an Enhanced Decision Scheme for RTLS

  • Lee Hyun-Jae;Jeong Seung-Hee;Oh Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.397-401
    • /
    • 2006
  • In this paper, we proposed a high precision location estimation algorithm using an enhanced decision scheme for RTLS and analyzed its performance in point of an average estimation error distance at 2D coordinates searching area, $300m\times300m$ and LOS propagation environments. Also the performance was compared with that of conventional TDOA algorithm according to the number of available reader and received sub-blink. From the results, we confirmed that the proposed location estimation algorithm using an enhanced decision scheme was able to improve an estimation accuracy even in boundary region of searching area. Moreover, effectively reduced an error distance in entire searching area so that increased the stability of location estimation in RTLS. Therefore, we verified that the proposed algorithm provided a more higher estimation accuracy and stability than conventional TDOA.

  • PDF

A Sequential Estimation Algorithm for TDOA/FDOA Extraction for VHF Communication Signals (VHF 대역 통신 신호에서 TDOA/FDOA 정보 추출을 위한 순차 추정 알고리즘)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.60-68
    • /
    • 2014
  • In modern electronic warfare systems, a demand on the more accurate estimation method based on TDOA and FDOA has been increased. TDOA/FDOA localization consists of two-stage procedures; the extraction of information from signals, and the estimation of emitter location. CAF(complex ambiguity function) is known as a basic method in the extraction stage. However, when we extract TDOA and FDOA information from VHF(very high frequency) communication signals, conventional CAF algorithms may not work within a permitted time because of much computation. Therefore, in this paper, an improved sequential estimation algorithm based on CAF is proposed for effective calculation of extracting TDOA and FDOA estimates in terms of computational complexity. The proposed method is compared with the conventional CAF-based algorithms through simulation. In addition, we derive the optimal performance based on the CRLB(Cramer-Lao lower bound) to check the extraction performance of the proposed method.

A 2-Step Global Optimization Algorithm for TDOA/FDOA of Communication Signals (통신 신호에서 TDOA/FDOA 정보 추출을 위한 2-단계 전역 최적화 알고리즘)

  • Kim, Dong-Gyu;Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.37-45
    • /
    • 2015
  • In modern electronic warfare systems, a demand on the more accurate estimation method based on TDOA and FDOA has been increased. TDOA/FDOA localization consists of two-stage procedures: the extraction of information from signals and the estimation of emitter location. Various algorithms based on CAF(complex ambiguity function), which is known as a basic method, has been presented in the area of extractions. When we extract TDOA and FDOA information using a conventional method based on the CAF algorithm from communication signals, considerably long integration time is required for the accurate position estimation of an unknown emitter far from sensors more than 300 km. Such long integration time yields huge amount of transmission data from sensors to a central processing unit, resulting in heavy computiational complexity. Therefore, we theoretically analyze the integration time for TDOA/FDOA information using CRLB and propose a two-stage global optimization algorithm which can minimize the transmission time and a computational complexity. The proposed method is compared with the conventional CAF-based algorithms in terms of a computational complexity and the CRLB to verify the estimation performance.