• Title/Summary/Keyword: TDC control

Search Result 85, Processing Time 0.026 seconds

Development of Anti-Windup Method for Time Delay Control (시간지연제어의 와인드업 방지를 위한 기법의 개발)

  • 장평훈;박석호;이성욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2616-2628
    • /
    • 1994
  • Recently the Time Delay Control(TDC) method has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are present. When TDC is applied to the plant with saturation nonlinearity, however, the so called windup phenomena are observed to arise, causing excessive overshoot and instability. In order to solve this problem, we have proposed an anti-windup method for TDC. The stability of the overall system has been analyzed for a class of LTI MIMO system. The effectiveness for the proposed method has been shown with simulation and experiment results.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

The Sliding Mode Control with a Time Delay Estimation (SMCTE) for an SMA Actuator

  • Lee, Hyo-Jik;Yoon, Ji-Sup;Lee, Jung-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.5-10
    • /
    • 2005
  • We deal with the sliding mode control using the time delay estimation. The time delay estimation is able to weaken the need for obtaining a quantitative plant model analogous to the real plant so the sliding mode control with a time delay estimation (SMCTE) is very suitable for plant such as SMA actuators whose quantitative model is difficult to obtain. We have already studied the application of the time delay control (TDC) to SMA actuators in other literature. Based on the previous study on the TDC, we developed the gain tuning method for the SMCTE, which results were nearly the same as the TDC. With respect to the step response, the SMCTE proved its predominance in a comparison with other control schemes such as the PID control and the relay control. As well as the contribution of the above control methodology, the model identification for SMA actuators has also been studied. The dynamics for an SMA actuator was newly derived using the modified Liang's model. The derived dynamics showed a continuity at the change of the phase transformation process but the original Liang's model could not.

  • PDF

A Study on Hybrid(Position/Force) Control of Robot Using Time Delay Control (시간지연제어기법을 이용한 로봇의 혼합(위치/힘) 제어에 관한 연구)

  • 장평훈;박병석;박주이
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2554-2566
    • /
    • 1994
  • Robot position/force control has been a difficult task owing to the interaction between a robot and an environment with a rather high stiffness. In addition to the dynamic instability, the interaction causes the following problem : 1) chattering at steady-state, 2) dynamic coupling effect of robot, and 3) performance degradation due to a titled environment. To solve the problem, the Time Delay Control(TDC), which has been known to be quiet robust to plant uncertainties and disturbances, has been applied. In conjunction to TDC, the following three ideas were also used : 1) To reduce the amplitude of the chattering at the steady state, a novel scheme was adopted to enhance the resolution type solution of A/D conversion for the force sensor. 2) To reduce the dynamic coupling, a trajectory type position command was tried on a comparative basis to the step command, as well as a more accurate mass matrix was used instead of the constant mass matrix. 3) And finally to improve the performance in the tilted environment, force derivatives instead of position derivatives were used in the TDC law. Computer simulations and experiments resulted in obvious improvements on the quality of the hybrid control, thereby clearly demonstrating the effectiveness of TDC with the proposed ideas.

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

A study on the design of a hovering flight controller for a model helicopter using time delay control (시간지연제어 기법을 이용한 모형헬리콥터의 정지비행제어기 설계)

  • 안현식;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.763-766
    • /
    • 1996
  • A model helicopter is an unstable, multi-input multi-output nonlinear system exposed to strong disturbances and its system parameters change continually. In this paper, Time Delay Control(TDC) is adopted for these reasons. TDC uses past observation of the system's response and the control input to directly modify the control action rather than adjusting the controller gains leading to a model independent robust controller. TDC can force the plant to follow an appropriate reference model, but the reference model cannot be chosen arbitrarily. In this paper the procedure of choosing a reference model and the performance of the controller are presented.

  • PDF

An anti-filtering compensator design for a stable implementation of time delay controller (시간지연제어기를 안정하게 구현하기 위한 대향 필터링 보상기의 설계)

  • 문의준;이상열;이영철;이정훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1034-1039
    • /
    • 1992
  • Time Delay Controller(TDC) is a model following controller which uses input and output values and state variables to estimate additional quantity of dynamics due to external disturbances and/or model parameters variation at some past instant. TDC is very robust against parametric uncertainty whil it is not robust against unmodeled dynamics even showing instability. To solve this problem a stability anlysis is performed and a compensation technique using reduced order observer, Anti-Filtering Compensator(AFC), is proposed for a case in which the high order kinown dynamics is deliberately ignored. If the ignored dynamics causes instability of the TDC control system, AFC is shown to be indispensible fot a stable implementation of TDC.

  • PDF

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF