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1. INTRODUCTION 
 

A significant attention has been focused on SMAs over the 
recent years, especially in the development of innovative 
engineering systems such as smart materials, active absorbers, 
micro actuators, etc. Unlike other alloys, SMAs possess 
peculiar characteristics such as a pseudo-elasticity and shape 
memory effects (SME), and many application areas have 
arisen since its discovery. Pseudo-elasticity has been 
successfully applied in medical and non-medical fields; for 
example, dental arches, catheter guide wires, vascular stents, 
eyeglass frames, mobile phone antennas, brassier wires, etc. 
The SME application area is limited compared to the field of 
pseudo-elasticity. SME has been applied to pipe couplings or 
fasteners, headings of thermostats, valves, and actuators of 
micro-robots; however, applications to precise engineering 
systems are somewhat problematic due to the highly nonlinear 
dynamic behavior of this alloy. 

Examples of hard nonlinearities include backlash-like 
hysteresis and a saturation due to SME, which causes 
difficulties for a precise control. Thus, numerous approaches 
for an SMA actuator control have been proposed. However, 
some unsolved problems still remain. Ordinary PID control 
schemes often show the steady-state errors and the limit-cycle 
problems. Majima et al. [1] proposed a control system 
composed of a PID feedback loop and a feedforward loop. 
They showed that the limit-cycle oscillations were 
significantly reduced and the tracking control performances 
were improved. Grant and Hayward [2] applied a variable 
structure control scheme to a pair of antagonist actuators and 
realized a smooth and robust control. Kumagai et al. [3] 
applied a neuro-fuzzy based control to SMA actuators, but 
tracking was not so accurate. D. Grant [4] developed a 
disk-type SMA actuator with a rapid response of about 2.0 Hz 
and applied the relay control that was robust against the 
parameter variations of the actuator. Hasegawa and Majima 
[5] tried to compensate for the hysteresis of SMAs using an 
inverse hysteresis model for an SMA plant; however, a 
generalized model that accurately explains the behavior of an 
SMA is difficult to obtain. Further, it is also difficult to 

achieve a perfect compensation even though a generalized 
model is obtained. 

On the other hand, the TDC does not require an exact 
mathematical model and also provides a robustness against 
variations of a systems’ parameters and disturbances. The key 
concept of the TDC is the use of time delay information to 
estimate the total plant nonlinearities. The TDC has been 
applied in many important plants such as robot systems [6-7] 
and a magnetic bearing [8]. In these applications, the TDC 
provided highly satisfactory results even under large system 
parameter variations and disturbances. We have also studied 
that application of the TDC to an SMA actuator in other 
literatures [9-10]. Based on the previous study on the TDC, we 
developed the SMCTE scheme, which is the modified version 
of the sliding mode control (SMC) to alleviate the requirement 
of a detail mathematical model. 

As well as the contribution of the above control 
methodology, the model identification for SMA actuators has 
also been studied. Most easily and most commonly used 
constitutive model for SMAs is the Liang’s model but it is not 
adequate to simulate the dynamic behavior of SMA actuators 
due to its numerical fault at the change of the phase 
transformation. Therefore, the dynamics for an SMA actuator 
was newly derived using the modified Liang’s model. The 
derived dynamics showed a continuity at the change of the 
phase transformation process but the original Liang’s model 
could not. SMA actuator characteristics could be described 
well by using this dynamics. For the prediction of the control 
performance and gain tuning of the TDC, the derived 
dynamics was superbly used. 

 
2. NEWLY DERIVED DYNAMICS  

FOR THE SMA ACTUATOR 
 
2.1 Governing equation  

We consider the dynamics of the rotational motion and 
bias-type actuator as shown in Fig. 1. In a bias-type actuator, 
the SMA actuator can be shrunk by a thermal excitation and 
can be restored to its original shape by a bias spring force 
under cooling conditions. In Fig. 1, θ  denotes the rotary 
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angle of the moment of inertia, J  and R  is the radius of the 
pulley coupled with the angle sensor. In most of the literature, 
including reference [1], the thermal term in the constitutive 
equation is not considered; however, in this paper the thermal 
term is included as the following equation: 

 
TEBARP &&&& ++= ξθ  (1) 

 
where P  is the force developed by the SMA actuator, ξ  is 
the martensite fraction, T  is the temperature and the dotted 
means a time derivative. Detail description of Eq. (1) and a 
derivation of the final form of dynamics were explained at 
length in reference [10]. The final form of the dynamics of the 
SMA actuator can be written as follows: 
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where subscript i  represents the initial value and the upper 
bar means the average value between time it  and t . 

 
Fig. 1 Structure of the SMA actuator. 

 
2.2 Modified Liang’s model  

We modified the original Liang’s model in terms of the 
phase diagram and discontinuity. Original Liang’s model is 
not sufficient to illustrate the behavior of SMAs under various 
temperature and stress conditions. Therefore, we added more 
constrained conditions as follows: 
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Each process, possesses three more constraints related to 

directions as well as the phase transformation band as shown 
in Fig. 2. 
 
2.3 Verification of the derived dynamics  

In order to verify the derived dynamics of the SMA 
actuator, we have solved the implicit differential equation, Eq. 

(2), iteratively. In respect to the phase transformation process, 
we have used a prediction-correction algorithm. In the 
prediction step, we essentially extrapolate the state variables 
from the previous point to the new point. In the correction step, 
we find the point where the phase transformation process 
changes within the current step using the bisection method. 
Subsequently, the current step is divided into two steps having 
different phase transformation processes. We have 
implemented the verification of the derived dynamics with a 
0.05 sec fixed step size using the Runge-Kutta solver of 
SIMULINK/MATLAB. First, we compared the major 
hysteresis in the simulation with the result in the experiment 
as shown in Fig. 3. In this case, we used the material 
properties of [10].  
 

 
Fig. 2 Phase diagram of the modified Liang’s model. 
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Fig. 3 Hysteresis curves. Dashed line: experiment; solid line: 

simulation. 
 

The modified Liang’s model is valuable when an 
incomplete cyclic hysteresis occurs as shown in Fig. 4. The 
temperature sequence in Fig. 4 develops an incomplete phase 
transformation so the path lay inside the major hysteresis. It is 
very important to notice that the modified Liang’s model 
maintains a continuous martensite fraction at the change of the 
phase transformation but the original model cannot. 

 

 
Fig. 4 Modified Liang’s model vs. original Liang’s model 
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3. Sliding mode control with a time delay estimation 
 
3.1 Problem of SMC  

As mentioned above, the dynamics of an SMA actuator has 
a large parameter variation as well as an unknown parameter, 
so it is difficult to obtain the nominal part of the system. This 
drawback is a crucial problem in SMC, because SMC requires 
the nominal model of the system. However, SMC with a time 
delay estimation need not obtain the nominal part. This 
advantage will be used in the systems which model cannot be 
obtained or which model is difficult to obtain. 

 
3.2 SMCTE derivation  

We consider the following nonlinear equation: 
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u  denotes the input vector and corresponds to T∆  in the 
rotary-type SMA actuator; f  denotes nonlinear function, 
which may be unknown, yet bounded; B  denotes the control 
distribution matrix; B̂  denotes the nominal control 
distribution matrix; d  the denotes disturbances; H  denotes 
the total uncertainty. 

The control input vector of the SMCTE can be calculated as 
follows: 
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For the estimation of the total uncertainty 

estH , we 
borrowed the time delay estimation from the time delay 
control. Consequently, the unknown total uncertainty at the 
present can be simply calculated using the past information at 

Lt −  if L  is enough small. For the sliding hyperplanes, the 
definition of s  is as follows: 
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Each element of the right side vector of Eq. (6) should be 
selected as a Hurwitz polynomial of the tracking errors of the 
associated state sub-vector. Substituting Eq. (5) for Eq. (4), we 
obtain the following s -dynamics: 
 

estHHsKPss −+−−= )sgn(&  (7) 
 
Eq. (7) is the constant plus proportional rate reaching law. 

Using Lyapunov stability criterion K can be simply obtained. 
For the system of Eq. (4) to be stable, the condition 0≤ss &T  
should be satisfied. Therefore, K  should satisfy the 
following inequality: 
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Due to the switching term of Eq. (5), the SMCTE cannot 

avoid a chattering problem like SMC. The switching action 
term can be replaced with a continuous term by making a 
boundary layer neighboring the sliding hyperplanes as 
follows: 
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3.3 SMCTE implementation  

Let us consider a single input system with a one state 
sub-vector. Without a loss of generality the control input can 
be expressed as: 
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where Φ  is the thickness of the boundary layer; λ  is a 
positive constant. In Eq. (10), we use the specific sliding 
surface proposed by Slotine [11] so α  is replaced by the last 
term in the bracket. 

Within the boundary layer, Eq. (10) can be replaced by: 
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Outside the boundary layer, Eq. (10) can be replaced by: 
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In the case of a second order system, Eq. (11) can be 
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expressed as: 
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Similarly, in the case of a second order system, Eq. (12) can 

be expressed as: 
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Discontinuity of the SMCTE can be removed by adding a 

boundary layer so the chattering phenomenon can be 
noticeably reduced. Considering Fig. 1, u  can be interpreted 
as 

iTTT −=∆  and x  can be interpreted as 
iθθθ −=∆ . 

 
4. Application to an SMA actuator 

 
4.1 Control strategy  

The derived SMA dynamics related to the temperature 
versus angle is a second order nonlinear system. However, a 
first order heat transfer equation related to the electric power 
versus temperature must be a part of the dynamics of the SMA 
actuator (see the part enclosed by dotted line in Fig. 5(a)). A 
main controller is focused on the control of the second order 
nonlinear system and the first order linear system is included 
in the internal closed-loop system, which includes a saturation 
element and an anti-windup scheme (see Fig. 5). The 
saturation element prevents the SMA actuator from 
overheating, which results in a limited maximum input voltage 
of 4 V. This nonlinear saturation element causes the windup 
phenomenon when an integral controller is used. Therefore, an 
anti-windup scheme is inevitable. If there is no internal 
closed-loop system in Fig. 5(a), we can design the gains of the 
SMCTE to guarantee the stability of the second order system. 
However, the stability problem of the whole control system is 
very difficult to solve analytically because of the nonlinear 
elements of the internal closed-loop system. Consequently, we 
leave the stability problem for a further study. 
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Fig. 5 Control block diagram (a) Overall. (b) Saturation with 

anti-windup block. 
 

4.2 Gain tuning  

Number of gains to be tuned is generally five when we use 
the constant plus proportional rate reaching law. Five gains are 
very difficult to tune so we select only the constant rate 
reaching law. Now, we have four gains to be tuned as follows: 

 
Φ,,,ˆ kb λ  (15) 

 
Because four gains are still difficult to tune, we utilize the 

comparison between the TDC and the SMCTE. Stable gain 
tuning method of the TDC was explained in detail in [10]. The 
control input structures of the TDC and the SMCTE within the 
boundary layer are identical. Therefore, the comparison tuning 
guarantees the same performance as in the TDC within 
boundary layer. In the case of a single input second order 
system with one state sub-vector, the control input of the TDC 
can be expressed as: 
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Comparing (13) and (16), the following condition will be 

obtained. 
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From Eq. (17), we can have the easily tuned gains if the 

thickness of boundary layer Φ  is defined. 
 

4.2 Experimental results  
For the verifications of the above SMCTE, we conducted 

experiments as well as simulations with the rotary motion and 
bias-type SMA actuators as shown in Fig. 1. The 
above-mentioned SMCTE schemes were implemented by 
using LabVIEW® programming language by an experiment. 
All the control algorithms ran with a sampling frequency of 
20Hz. 
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Fig. 6 Simulation result of SMCTE. 

 
To begin with, let us see the SMCTE without boundary 

layer as shown in Figs 6 and 7, which show the simulation and 
experimental results respectively in case of a step reference 
command of 80 degrees. In spite of a little discrepancy 
between the simulation and experimental results, the overall 
tendency is in agreement with each other. This tells us that the 
derived dynamics of the SMA actuator is not only valid but 
the simulation is also enough to predict the experimental result. 
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From the time-input voltage and the error-error velocity 
relations, we could conclude that the SMCTE without a 
boundary layer has a large amplitude of the limit-cycle and a 
severe chattering phenomenon. 
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Fig. 7 Experimental result of the SMCTE. 

 
From the left-bottomed figures in Fig. 6, 7, we could also 

find that the path lead to the minor hysteresis following the 
major hysteresis. From this, we can expect the steady-state 
will be within the major hysteresis. 
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Fig. 8 Simulation result of the SMCTE with boundary layer. 
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Fig. 9 Experimental result of the SMCTE with boundary layer. 

 

Now let us see the effect of the boundary layer added to the 
SMCTE as shown in Figs 8 and 9. The chattering phenomenon 
and the limit-cycle were remarkably reduced. This 
performance is about the same as in the TDC [10] because we 
used the TDC based tuning method. 

 
Table 1 The Comparison of the applied controllers. 

 
 Z.N. TDC PID SMCTE SMCTEBL RC

Tsettle 
(sec) >100 6.1 4.8 14.4 6.2 53.7

mean 
error - 0.00 0.00 0.04 0.00 0.05

∆error 
(deg) - 0.16 0.14 0.23 0.12 0.45

∆errordot 
(deg/sec) - 2.36 2.36 3.14 2.76 4.70
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Fig. 10 Comparison of the limit-cycles. 

 
Based on the four criteria, we compared 6 control schemes 

in Table 1: the PID control based on the Ziegler-Nichols 
method; the TDC; the PID control based on the TDC; the 
SMCTE without a boundary layer; the SMCTE with a 
boundary layer; the relay control. We could not reach a 
steady-state when a PID gain tuning is based on the 
Ziegler-Nichols method as shown in Fig. 10. The 3 gains of 
the PID control can be tuned to have the same performance as 
in the TDC. (See reference [12] about the detailed 
description.) The PID control scheme based on the TDC also 
shows nearly the same performance as the TDC. The relay 
control can be implemented by using the only discontinuous 
term in the bracket of Eq. (14). Among 6 controllers, the 
SMCTE without a boundary layer and the RC is very similar. 
This means that the k  gain was tuned even larger than others 
in Eq. (14). The RC as well as the SMCTE without a boundary 
layer cannot have a zero error at the steady-state. 

 
5. Conclusions 

 
We dealt with the SMC with a time delay estimation for an 

application to an SMA actuator. We proposed the SMCTE 
with and without a boundary layer, and also studied the 
comparison gain tuning method based on the TDC result. The 
SMCTE with a boundary layer showed a good performance in 
terms of the various criteria. As well as the contribution of the 
above control methodology, the model identification for the 
SMA actuators was also studied. The derived dynamics 
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showed a continuity at the change of the phase transformation 
process but the original Liang’s model could not. 
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